Study of the biofilm form of vibrio cholera by RT-PCR

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Vibrio cholerae can exist in planktonic and biofilm forms. There are no unified methods for recording the formation of a biofilm and the quantitative determination of microorganisms; the known methods are laborious and do not allow an objective assessment of the concentration of V. cholerae in biofilms.

AIM: This study aimed to evaluate the method for the quantitative determination of V. cholerae in biofilm and planktonic forms based on real-time PCR.

MATERIALS AND METHODS: The concentration of V. cholerae in plankton was determined by the bacteriological method based on the number of colony-forming units per 1 ml; in biofilms, the method of imprint depletion on agar plates was used. Real-time PCR was performed using the primers and probes described in the literature for detecting the hlyA and ctx genes. V. cholerae were quantified using built-in software and standard preparations with a known concentration of bacterial cells. The results were processed in Microsoft Office Excel 2016 spreadsheets using the decimal logarithm; statistical analysis was performed using the Statistica 13.3 program.

RESULTS: During the observation period, the concentration of V. cholerae in biofilms on chitin and plastic increases as the incubation period increases. The amount of V. cholerae in the composition of biofilms and plankton on/above chitin exceeded those when used as a plastic substrate. On the 30th day, the difference was two or more orders of magnitude. The results of the two methods were reproducible and comparable; at the same stages, the concentration of V. cholerae varied within the same order of magnitude, which indicated the reliability of the PCR-RT results.

CONCLUSION: The bacteriological method is informative in the qualitative assessment of biofilms, in determining the viability of cholera vibrios. However, due to its complexity, with the impossibility of quickly determining the concentration of V. cholerae in a biofilm on chitin, it is preferable to use real-time PCR, which allows you to assess the concentration of V. cholerae in plankton and biofilm accurately and quickly.

Full Text

Restricted Access

About the authors

Svetlana V. Titova

Rostov-on-Don Plague Control Researsh Institute

Email: titova_sv@antiplague.ru
ORCID iD: 0000-0002-7831-841X
SPIN-code: 5695-2103

MD, Cand. Sci. (Med.)

Russian Federation, 344002, Rostov-on-Don, st. M. Gorky, 117/40

Elena A. Menshikova

Rostov-on-Don Plague Control Researsh Institute

Email: menshikova_ea@antiplague.ru
ORCID iD: 0000-0002-6003-4283
SPIN-code: 6367-4404

Cand. Sci. (Biol.)

Russian Federation, 344002, Rostov-on-Don, st. M. Gorky, 117/40

Sergei O. Vodop'yanov

Rostov-on-Don Plague Control Researsh Institute

Email: serge100v@gmail.com
ORCID iD: 0000-0003-4336-0439
SPIN-code: 4672-9310

MD, Dr. Sci. (Med.)

Russian Federation, 344002, Rostov-on-Don, st. M. Gorky, 117/40

Igor P. Oleynikov

Rostov-on-Don Plague Control Researsh Institute

Email: serge100v@gmail.com
ORCID iD: 0000-0002-2390-9773
Russian Federation, 344002, Rostov-on-Don, st. M. Gorky, 117/40

Tamara N. Borodina

Rostov-on-Don Plague Control Researsh Institute

Author for correspondence.
Email: borodina_tn@antiplague.ru
ORCID iD: 0000-0001-6222-4331
Russian Federation, 344002, Rostov-on-Don, st. M. Gorky, 117/40

References

  1. Silva AJ, Benitez JA. Vibrio cholerae Biofilms and Cholera Pathogenesis. PLoS Negl Trop Dis. 2016;10(2):e0004330. doi: 10.1371/journal.pntd.0004330
  2. Yoon SH, Waters CM. Vibrio cholerae. Trends Microbiol. 2019;27(9):806–807. doi: 10.1016/j.tim.2019.03.005
  3. Chatterjee T, Saha T, Sarkar P, et al. The gold nanoparticle reduces Vibrio cholerae pathogenesis by inhibition of biofilm formation and disruption of the production and structure of cholera toxin. Colloids Surf B Biointerfaces. 2021;204:111811. doi: 10.1016/j.colsurfb.2021.111811
  4. Okulich VK, Kabanova AA, Plotnikov FV. Microbial biofilms in clinical microbiology and antibiotic therapy. Vitebsk: VSMU; 2017. 300 p. (In Russ).
  5. Determination of the concentration of microbial cells: a general pharmacopoeial article. OFS.1.7.2.000815. State Pharmacopoeia of the Russian Federation. 13rd ed. Vol. II. Moscow; 2015. (In Russ).
  6. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30(2):295–304. doi: 10.1046/j.1365-2958.1998.01062.x
  7. Romanova YuM, Gintsburg AL. Bacterial biofilms as a natural form of existence of bacteria in the environment and the host organism. Journal of Microbiology, Epidemiology and Immunobiology. 2011;(3):99–109. (In Russ).
  8. Augustine N, Wilson PA, Kerkar S, Thomas S. Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr Microbiol. 2012;64(4):338–342. doi: 10.1007/s00284-011-0073-4
  9. Kharseeva GG, Mironov AYu, Frolova YaN, Labushkina AV. Ability to form a biofilm by the causative agent of diphtheria. Clinical Laboratory Diagnostics. 2013;(2):36–38. (In Russ).
  10. Tamayo R, Patimalla B, Camilli A. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun. 2010;78(8):3560–3569. doi: 10.1128/IAI.00048-10
  11. Titova SV, Verkina LM. Modeling of Vibrio cholerae biofilms on solid surfaces (glass and plastic) and their visualization in light and luminescent microscopes. Clinical Laboratory Diagnostics. 2016;61(4):238–241. (In Russ).
  12. Patent RUS №2559546/ 10.08.2015. Titova SV, Kushnareva EV. Sposob modelirovaniya obrazovaniya bioplonok kholernykh vibrionov v usloviyakh eksperimenta i ustroystvo dlya yego osushchestvleniya. Available from: https://yandex.ru/patents/doc/RU2559546C1_20150810. Accessed: 15.12.2021. (In Russ).
  13. Vodopyanov SO, Titova SV, Vodopyanov AS, et al. Study of interspecific competition of Vibrio cholerae in biofilms. Public Health and Habitat — ZNiSO. 2017;(3):51–54. (In Russ).
  14. Patent RUS №2685878/ 30.01.2018. Vodopyanov SO, Vodopyanov AS, Menshikova EA, et al. Sposob modelirovaniya bioplonok, formiruyemykh Vibrio cholerae O1 serogruppy na poverkhnosti khitina. Available from: https://yandex.ru/patents/doc/RU2685878C1_20190423. Accessed: 15.12.2021. (In Russ).
  15. Menshikova EA, Kurbatova EM, Vodopyanov SО, et al. Evaluation of the ability of cholera vibrios to form a biofilm on the surface of the chitinous shell of a crayfish by real-time PCR. Journal of Microbiology, Epidemiology and Immunobiology. 2021;98(4):434–439. (In Russ). doi: 10.36233/0372-9311-99
  16. Huang J, Zhu Y, Wen H, et al. Quadruplex real-time PCR assay for detection and identification of Vibrio cholerae O1 and O139 strains and determination of their toxigenic potential. Appl Environ Microbiol. 2009;75(22):6981–6985. doi: 10.1128/AEM.00517-09
  17. Lyon WJ. TaqMan PCR for detection of Vibrio cholerae O1, O139, non-O1, and non-O139 in pure cultures, raw oysters, and synthetic seawater. Appl Environ Microbiol. 2001;67(10):4685–4693. doi: 10.1128/AEM.67.10.4685-4693.2001
  18. Vodopyanov AS, Vodopyanov SO, Oleynikov IP, Pisanov RV. Identification of Vibrio cholerae strains of the “Haitian” group by PCR based on INDEL-typing. Journal of Microbiology, Epidemiology and Immunobiology. 2020;97(3):265–270. (In Russ). doi: 10.36233/0372-9311-2020-97-3-9
  19. Khusnutdinova TA, Savochkina YuA, Gushchin AE, et al. The use of real-time quantitative multiplex PCR to detect pathogens of urinary tract infections in pregnant women. Pediatrician. 2014;(3):37–41. (In Russ).
  20. Poleeva MV, Chemisova OS, Vodopyanov SO, et al. Experimental study of the features of the formation of a biofilm on the surface of biotic objects by parahemolytic vibrios. Bulletin of the Perm University. 2019;(4):417–425. (In Russ). doi: 10.17072/1994-9952-2019-4-417-425
  21. Hunt DE, Gevers D, Vahora NM, Polz MF. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol. 2008;74(1):44–51. doi: 10.1128/AEM.01412-07
  22. Stauder M, Vezzulli L, Pezzati E, et al. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ Microbiol Rep. 2010;2(1):140–144. doi: 10.1111/j.1758-2229.2009.00121.x
  23. Markov EYu, Kulikalova ES, Urbanovich LYa, et al. Chitin and products of its hydrolysis in Vibrio cholerae ecology. Biochemistry Moscow. 2015;80(9):1109–1116. (In Russ). doi: 10.1134/S0006297915090023
  24. Duvanova OV, Mishankin BN, Sorokin VM, Titova SV. Evaluation of the effect of cultivation temperature on the activity of N-acetyl-β-D-glucosaminidase in V. cholerae. Public Health and Habitat — ZNiSO. 2016;(4):42–44. (In Russ).
  25. Organization of the work of laboratories using nucleic acid amplification methods when working with material containing microorganisms of pathogenicity groups I–IV: MU1.3.2569-09. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor; 2010. 51 p. (In Russ).
  26. Amplifier detecting DTlight: operation manual. Part I: Working with the device. TU 9443-003-96301278-2010. Protvino: NPO DNA-Technology; 52 p. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. V. cholerae El Tor 19613 biofilm on cover glasses in prints on agar plates.

Download (540KB)

Copyright (c) 2022 Eco-vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 014448 от 08.02.1996
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80652 от 15.03.2021
.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies