Role of integrative and conjugative elements in heavy metal resistance of Vibrio cholerae

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: Environmental surveillance across Russian regions has documented the consistent isolation of nontoxigenic Vibrio cholerae strains and the sporadic detection of individual toxigenic Vibrio cholerae О1 El Tor strains. Heavy metals in the environment are considered among the factors that may drive the evolution of V. cholerae. Assessment of the tolerance of nontoxigenic V. cholerae О1 strains from water sources confirmed the presence of isolates resistant to a wide range of heavy metals in various combinations. Few investigations have addressed the genetic basis of heavy metal tolerance in Vibrio species, and no data are available on heavy metal resistance genes in toxigenic V. cholerae.

Aim: The work aimed to identify potential genes conferring heavy metal resistance in toxigenic V. cholerae.

Methods: Two V. cholerae O1 strains—83 and 5879—and Escherichia coli QD5003 Rif r were used. For in silico analysis, 1880 complete genomes of toxigenic V. cholerae belonging to different serogroups and collected over different periods were screened.

Results: Comparative bioinformatic analysis using genome subtraction identified the czcA gene (NCBI GenBank accession number MVB73536.1) in V. cholerae strain 83. Analysis of the sequenced genomes of 1880 V. cholerae strains from various serogroups and collection periods detected the czcA gene in 159 of 1125 toxigenic strains (14.1%), but in none of the 775 nontoxigenic genomes. The presence of the czcA gene in V. cholerae strain 83 as part of an integrative and conjugative element of the ICEVchBan11 type was confirmed by in silico polymerase chain reaction (PCR) using virtual primers. Among the 159 czcA-positive genomes of V. cholerae, two integrative and conjugative element types were reliably identified: 113 ICEVchBan9 and 27 ICEVchBan11. To investigate the possible biological role of czcA, the ICEVchBan11 was transferred by conjugation into V. cholerae 5879 cells. The resulting czcA-positive 5879 strain cells showed a significant increase in resistance to cadmium ions.

Conclusion: These findings suggest that the presence of the czcA gene in toxigenic V. cholerae may enhance resistance to the toxic effects of heavy metals. In particular, this may provide the bacteria with a selective advantage in aquatic environments with elevated cadmium ion concentrations.

Full Text

Restricted Access

About the authors

Sergey O. Vodopyanov

Rostov-on-Don Anti-plague Institute Rospotrebnadzor

Author for correspondence.
Email: serge100v@gmail.com
ORCID iD: 0000-0003-4336-0439
SPIN-code: 4672-9310

MD, Dr. Sci. (Medicine)

Russian Federation, 117/40 M. Gorkogo st, Rostov-on-Don, 344002

Artem V. Evteev

Rostov-on-Don Anti-plague Institute Rospotrebnadzor

Email: evteev_av@antiplague.ru
ORCID iD: 0000-0002-0087-9153
SPIN-code: 6050-0361
Russian Federation, 117/40 M. Gorkogo st, Rostov-on-Don, 344002

Alexey S. Vodopyanov

Rostov-on-Don Anti-plague Institute Rospotrebnadzor

Email: vodopyanov_as@antiplague.ru
ORCID iD: 0000-0002-9056-3231
SPIN-code: 7319-3037

MD, Cand. Sci. (Medicine)

Russian Federation, 117/40 M. Gorkogo st, Rostov-on-Don, 344002

Ruslan V. Pisanov

Rostov-on-Don Anti-plague Institute Rospotrebnadzor

Email: pisanov_rv@antiplague.ru
ORCID iD: 0000-0002-7178-8021
SPIN-code: 4270-3091

Cand. Sci. (Biology)

Russian Federation, 117/40 M. Gorkogo st, Rostov-on-Don, 344002

Nadezhda A. Selyanskaya

Rostov-on-Don Anti-plague Institute Rospotrebnadzor

Email: selyanskaya_na@antiplague.ru
ORCID iD: 0000-0002-0008-4705
SPIN-code: 7920-3340

MD, Cand. Sci. (Medicine)

Russian Federation, 117/40 M. Gorkogo st, Rostov-on-Don, 344002

Vladimir D. Kruglikov

Rostov-on-Don Anti-plague Institute Rospotrebnadzor

Email: kruglikov_vd@antiplague.ru
ORCID iD: 0000-0002-6540-2778
SPIN-code: 9767-2936

MD, Dr. Sci. (Medicine)

Russian Federation, 117/40 M. Gorkogo st, Rostov-on-Don, 344002

References

  1. Noskov AK, Kruglikov VD, Moskvitina EA, et al. Characteristics of the epidemiological situation of Cholera in the World and in the Russian Federation in 2020 and forecast for 2021. Problems of Particularly Dangerous Infections. 2021;(1):43-51. doi: 10.21055/0370-1069-2021-1-43-51 EDN: FDEEHM
  2. Noskov AK, Kruglikov VD, Moskvitina EA. Cholera: trends in the development of the epidemic process in 2021 and forecast for 2022. Problems of Particularly Dangerous Infections. 2022;(1):24-34. doi: 10.21055/0370-1069-2022-1-24-34 EDN: DEWWJY
  3. Chen R, Tu H, Chen T. Potential application of living microorganisms in the detoxification of heavy metals. Foods. 2022;11(13):1905. doi: 10.3390/foods11131905 EDN: SNLBSZ
  4. Sandhi A, Yu C, Rahman MM, et al. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. Environ. Sci. Pollut. Res. 2022;29(34):51354–51366. doi: 10.1007/s11356-022-20880-0 EDN: JPPOMH
  5. Bueno E, Pinedo V, Shinde DD, et al. Transient glycolytic complexation of arsenate enhances resistance in the enteropathogen Vibrio cholerae. mBio. 2022;13(5). doi: 10.1128/mbio.01654-22 EDN: XMMIBJ
  6. Klenova IA, Shulga TG. Technology of cleaning of the river Temernik. Engineering Journal of Don. 2018;1(48):118. EDN: XSMPZJ
  7. Fang J, Cheng H, Yu T, et al. Occurrence of virulence factors and antibiotic and heavy metal resistance in Vibrio parahaemolyticus isolated from Pacific mackerel at markets in Zhejiang, China. J. Food Prot. 2020;83(8):1411-9. doi: 10.4315/jfp-20-091 EDN: ADHOFV
  8. Yu P, Yang L, Wang J, et al. Genomic and transcriptomic analysis reveal multiple strategies for cadmium tolerance in Vibrio parahaemolyticus N10-18 isolated from aquatic animal Ostrea gigas Thunberg. Foods. 2022;11(23). doi: 10.3390/food11233777 EDN: JCEVAY
  9. Kang CH, Shin Y, Yu H, et al. Antibiotic and heavy metal resistance of Vibrio parahaemolyticus isolated from oysters in Korea. Mar. Pollut. Bull. 2018;135:69-74. doi: 10.1016/j.marpolbul.2018.07.007
  10. Song Y, Yu P, Li B, et al. The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and the environment in the Yangtze River estuary, China. BMC Microbiol. 2013;13(1):1-13. doi: 10.1186/1471-2180-13-214 EDN: AXKKAQ
  11. Fu H, Yu P, Liang W, et al. Virulence, resistance, and genomic fingerprint traits of Vibrio cholerae isolated from 12 species of aquatic products in Shanghai, China. Microb. Drug Resist. 2020;26(12):1526–1539. doi: 10.1089/mdr.2020.0269 EDN: IKNVWS
  12. Xu M, Wu J, Chen L. Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish. Environ. Sci. Pollut. Res. 2019;26(26):27338-27352. doi: 10.1007/s11356-019-05287-8 EDN: TKRLQE
  13. Vodopyanov SO, Gerasimenko AA, Yezhova MI, et al. Combined occurrence of the cold shock gene csh1 and the arsenic resistance gene arsB in Vibrio cholerae O1, O139, NonO1/NonO139 serogroups. Bulletin of Biotechnology and Physico-Chemical Biology named after Yu.A. OVchinnikov. 2023;19(3):14-21. EDN: REQXAU
  14. Wick RR, Judd LM, Cerdeira LT et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 2021;22(1):266. doi: 10.1186/s13059-021-02483-z EDN: UNZRDJ
  15. Wick RR, Judd LM, Holt KE. Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing. PLoS Comput. Biol. 2023;19(3):e1010905. doi: 10.1371/journal.pcbi.1010905 EDN: MCAGXD
  16. Oxford Nanopore Technologies. Sequence correction provided by Oxford Nanopore Technologies research [Internet]. GitHub repository. 2018. [cited 2023 Oct 23]. Available from: https://github.com/nanoporetech/medaka
  17. Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11):e112963. doi: 10.1371/journal.pone.0112963
  18. Vodopyanov AS, Vodopyanov SO, Pisanov RV. V. сholerae ICE Genotyper [Computer program]. Certificate of state registration of the computer program No. 2023663855, application No. 2023663090; 2023. Available from: https://shorturl.at/AMN63
  19. Selyanskaya NA, Titova SV, Menshikova EA, et al. The influence of cultivation conditions on the transfer of antibiotic resistance genes in Vibrio cholera. Antibiot Khimioter = Antibiotics and Chemotherapy. 2024;69(9-10):4-10. doi: 10.37489/0235-2990-2024-69-9-10-4-10 EDN: QYNJYC
  20. Pal C, Bengtsson-Palme J, Rensing C, et al. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2013;42(D1):D737–43. doi: 10.1093/nar/gkt1252
  21. Nies DH, Nies A, Chu L, Silver S. Expression and nucleotide sequence of a divalent cation efflux system from Alcaligenes eutrophus determined by a plasmid. Proc. Natl. Acad. Sci. U.S.A. 1989;86(19):7351-7355. doi: 10.1073/pnas.86.19.7351
  22. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:W20–25. doi: 10.1093/nar/gkh435 EDN: IUCVKN
  23. Vodopyanov SO, Vodopyanov AS, Oleynikov IP, Titova SV. Prevalence of ICE elements of different types in Vibrio cholerae. Public Health and Life Environment – PH&LE. 2018;(1(298)):33-35. doi: 10.35627/2219-5238/2018-298-1-33-35 EDN: YTZSTV
  24. Nies DH. Cobalt, zinc, cadmium efflux system (CzcABC) from Alcaligenes eutrophus in Escherichia coli functions as a proton-cation antiporter. J. Bacteriol. 1995;177(10):2707-2712. doi: 10.1128/jb.177.10.2707-2712.1995
  25. Kaci A, Petit F, Lesueur P, et al. Distinct diversity of the czcA gene in two sedimentary horizons from a contaminated estuarine core. Environ. Sci. Pollut. Res. 2014;21:10787–10802. doi: 10.1007/s11356-014-3029-y EDN: TQTMGZ
  26. Dahanayake PS, Hossain S, Wickramanayake MVKS, Heo GJ. Antibiotic and heavy metal resistance genes in Aeromonas spp. isolated from marketed Manila Clam (Ruditapes philippinarum) in Korea. J. Appl. Microbiol. 2019;127(3):941–952. doi: 10.1111/jam.14355 EDN: SYKMKP
  27. Kumarage PM, Majeed S, De Silva LADS, Heo GJ. Detection of virulence, antimicrobial resistance, and heavy metal resistance properties in Vibrio anguillarum isolated from mullet (Mugil cephalus) cultured in Korea. Braz. J. Microbiol. 2023;54:415–425. doi: 10.1007/s42770-023-00911-9 EDN: GMRRHS

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the structure of the integrative-conjugative elements of Vibrio cholerae ICEVchBan9 and ICEVchBan11. The positions of the traB and traC genes within ICEVchBan11 are indicated by vertical arrows. The location of the czcA gene is indicated by an asterisk.

Download (1MB)

Copyright (c) 2025 Eco-vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80652 от 15.03.2021
. Учредитель ООО "Эко-Вектор Ай-Пи" (ОГРН 1157847215338).