The priority of bacteria Staphylococcus spp. in the etiology of purulent septic infections through the prism of new diagnostic capabilities: A literature review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Representatives of the genus Staphylococcus spp. occupy a leading place in the etiology of infections caused by opportunistic bacteria. Staphylococcus spp., being symbionts of humans and/or animals, are constantly located on the surface of the skin and mucous membranes, which are their natural habitats.

The importance of bacteria of the genus Staphylococcus spp. It is determined by their significant distribution in the population, as well as among patients and medical personnel, due to their transient and resident carrier, as well as their high adaptive potential, due to their ability to form biofilms and produce enzymes that provide them with protection from antimicrobial drugs.

Modern molecular genetic methods for identifying Staphylococcus spp. and assessing their epidemic potential allow us to rethink their importance in the etiology of nosocomial purulent septic infections in a new way. It is no coincidence that they entered the group of ESCAPE pathogens with a high level of priority.

The ability of staphylococci to form biofilms ensures their survival in various hospital/environmental facilities, which in the conditions of a medical organization become additional, or so-called “inanimate” sources of infection.

In recent years, despite the increasing role of coagulase-negative staphylococci in the etiology of purulent septic infections, Staphylococcus aureus remains the most significant causative agent of purulent septic infections.

Full Text

Restricted Access

About the authors

Alexander M. Borisov

Gabrichevsky Research Institute for Epidemiology and Microbiology

Email: simba.key@gmail.com
ORCID iD: 0009-0000-2272-0082
Russian Federation, 10 Admirala Makarova street, 125212 Moscow

Alla A. Golubkova

Central Research Institute of Epidemiology; Russian Medical Academy of Continuing Professional Education

Author for correspondence.
Email: allagolubkova@yandex.ru
ORCID iD: 0000-0003-4812-2165
SPIN-code: 6133-2572

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 125993 Moscow; 111123 Moscow

Tatiana A. Ruzhentsova

Gabrichevsky Research Institute for Epidemiology and Microbiology; Medical University “Reaviz”

Email: ruzhencova@gmail.com
ORCID iD: 0000-0002-6945-2019
SPIN-code: 3685-2618

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 10 Admirala Makarova street, 125212 Moscow; Moscow

References

  1. Bush LM, Vazquez-Pertejo MT. Staphylococcal Infections. MSD Manual. 2023. Available from: https://www.msdmanuals.com/ru-ru/professional/инфекционные-болезни/грамположительные-кокки/стафилококковые-инфекции (In Russ.)
  2. O’Toole RF. The interface between COVID-19 and bacterial healthcare-associated infections. Clin Microbiol Infect. 2021; 27(12):1772–1776. doi: 10.1016/j.cmi.2021.06.001
  3. Suetens C, Latour K, Kärki T, et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Euro Surveill. 2018;23(46):1800516. doi: 10.2807/1560-7917.ES.2018.23.46.1800516 Erratum in: Euro Surveill. 2018;23(47). doi: 10.2807/1560-7917.ES.2018.23.47.181122e1
  4. Morozov AM, Morozova AD, Belyak MA, et al. Infections associated with the provision of medical care. Modern view on the problem (literature review). Journal of New Medical Technologies, e-edition. 2022;16(4):107–116. (In Russ.) doi: 10.24412/2075-4094-2022-4-3-3
  5. Jo A, Won J, Gil CH, et al. Nasal symbiont Staphylococcus epidermidis restricts the cellular entry of influenza virus into the nasal epithelium. NPJ Biofilms Microbiomes. 2022;8(1):26. doi: 10.1038/s41522-022-00290-3
  6. Sabaté Brescó M, Harris LG, Thompson K, et al. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol. 2017;8:1401. doi: 10.3389/fmicb.2017.01401
  7. Byrd AL, Deming C, Cassidy SKB, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. doi: 10.1126/scitranslmed.aal4651
  8. Williams MR, Cau L, Wang Y, et al. Interplay of Staphylococcal and Host Proteases Promotes Skin Barrier Disruption in Netherton Syndrome. Cell Rep. 2020;30(9):2923–2933.e7. doi: 10.1016/j.celrep.2020.02.021
  9. Valyshev АV, Valysheva IV. The Role of Anti-Lactoferrin Activity of Bacteria in Their Persistence. Journal of Microbiology, Epidemiology and Immunobiology. 2006;(4):23–25. EDN: HTXQQX
  10. Veremchuk L.V. Systematic assessment of the human habitat and the spread of environmentally dependent diseases on the example of bronchopulmonary pathology [abstract of dissertation]. Vladivostok; 2006. 37 p. EDN: ZNQTXX
  11. Kulagina LYu, Valiullina IR, Kadyseva ER, Shikaleva AA. Features of antibiotic resistance by the data of microbiological monitoring in a multi-profile hospital. Practical Medicine. 2021;19(4):79–83. (In Russ.) doi: 10.32000/2072-1757-2021-4-79-83
  12. Suleymanov S.F. Retrospective analysis of the incidence of nosocomial infections in healthcare facilities in the Bukhara region. Problemy nauki. 2023;(5(79)):18–19. (In Russ.) EDN: BTWWXC
  13. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520–532. doi: 10.1056/NEJM199808203390806
  14. Loewen K, Schreiber Y, Kirlew M, Bocking N, Kelly L. Community-associated methicillin-resistant Staphylococcus aureus infection: Literature review and clinical. Can Fam Physician. 2017;63(7): 512–520. Erratum in: Can Fam Physician. 2017;63(8):596.
  15. Bozhkova SA, Polyakova EM, Krasnova MV. The breaking of resistance to gentamycin in methicillin resistant Staphylococcus aureus strains. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii = International Journal of Applied and Fundamental Research. 2017;(8-1):97–103. (In Russ.) EDN: ZCISPL
  16. Primak TD, Shevchuk EuA. Antibiotics resistance of the microflora of obstetric hospital and its change under the influence of negative airions. The Transbaikalian Medical Bulletin. 2014;(2):21–30. (In Russ.) EDN: SFKPOH
  17. Gladkih PG. Importance of microbiofilms in infection pathology of human (review). Journal of New Medical Technologies, eEdition. 2015;(1):3-2. (In Russ.) doi: 10.12737/7834
  18. Chebotar IV. Biofilms of S. aureus: structural and functional characteristics and relationships with neutrophils [dissertation]. Moscow; 2014. 239 p. (In Russ.)
  19. Morris DP, Hagr A. Biofilm: why the sudden interest? J Otolaryngol. 2005;34 Suppl 2:S56–S59.
  20. Petukhova IN, Dmitrieva NV, Grigor’evskaya ZV, et al. Infections associated with biofilm formation. Zlokachestvennye opukholi. 2019;9(3S1):26–31. (In Russ.) doi: 10.18027/2224-5057-2019-9-3s1-26-31
  21. Nunez C, Kostoulias X, Peleg A, Short F, Qu Y. A comprehensive comparison of biofilm formation and capsule production for bacterial survival on hospital surfaces. Biofilm. 2023;5:100105. doi: 10.1016/j.bioflm.2023.100105
  22. Balbutskaya AA, Dmitrenko OA, Skvortsov VN. The modern characteristics of species identification of coagulase-positive bacteria of Staphylococcus genus. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2017;62(8):497–502. (In Russ.) doi: 10.18821/0869-2084-2017-62-8-497-502
  23. Badamshina GG, Masyagutova LM, Fishchenko RR, et al. Comparative assessment of the microbiota of the mucous membranes of the upper respiratory tract in medical workers and agricultural workers. In: Modern problems of occupational hygiene and medicine. Materials of the All-Russian scientific and practical conference with international participation. September 22–23, 2015. Ufa. Ufa: Knizhnyi format; 2015. P. 264–268. (In Russ.)
  24. Karamova LM, Gizatullina LG, Vlasova NV, et al. The microflora characteristics of the upper respiratory tract in dental workers. Occupational medicine and human ecology. 2023;(2(34)):57–71. (In Russ.) doi: 10.24412/2411-3794-2023-10204
  25. Bondarenko AP, Shmilenko VA, Trotsenko OE, Zaitseva TA. Some aspects of epidemic process of health care-associated infections (literature review). Far Eastern Journal of Infectious Pathology. 2019;(36):92–97. (In Russ.) EDN: ZADEKQ
  26. Koza NM. Infections connected with rendering medical care. Epidemiology and prevention (Review lecture). Perm Medical Journal. 2013;30(4):135–143. (In Russ.) doi: 10.17816/pmj304135-143
  27. Trotsenko OE, Bondarenko AP, Pshenichnaya NY, et al. Evaluation of the two in-patient hospitals on potential environmental hazard during the period of new coronavirus infection in the Khabarovsk city (december 2020 — march 2021). Russian Journal of Infection and Immunity. 2022;12(3):535–542. (In Russ.) doi: 10.15789/2220-7619-EOT-1844
  28. Kuznetsova OM, Marchenko AN, Markova OP. Monitoring the use of disinfectants in light of health protection of medical personnel. International Research Journal. 2021;(2(104)):34–37. (In Russ.) doi: 10.23670/IRJ.2021.103.2.068
  29. Serov AA, Shesotpalov NV, Gololobova TV, et al. The role of disinfectological investigations in the management of the complex of preventive activities. Hygiene and Sanitation. 2020;99(3):235–241. (In Russ.) doi: 10.47470/0016-9900-2020-99-3-235-241
  30. Smetanin VN. The effectiveness of the use of modern means of sterilization in the prevention of HCAI (brief literature report). Journal of New Medical Technologies. 2017;24(2):226–232. (In Russ.) EDN: ZDHMOX
  31. Skachkova TS. Improvement of the epidemiological monitoring system for infections caused by methicillin-resistant strains of staphylococcus, based on molecular biological methods [dissertation]. Moscow; 2023. 159 p. (In Russ.)
  32. Kolasiński W. Surgical site infections — review of current knowledge, methods of prevention. Pol Przegl Chir. 2018;91(4):41–47. doi: 10.5604/01.3001.0012.7253
  33. Morozov AM, Sergeev AN, Sergeev NA, Ryzhova ТS, Pakhomov MA. Diagnosis and prophylaxis of infectious complications in surgical intervention zone. Bulletin of the Ivanovo Medical Academy. 2021;26(1):54–58. (In Russ.) doi: 10.52246/1606-8157_2021_26_1_54
  34. Briko NI, Bozhkova SA, Brusina EB, et al. Prevention of infections in the surgical area: clinical recommendations. Nizhny Novgorod: Remedium Privolzhye; 2018. 72 p. (In Russ.) doi: 10.21145/Clinical_Guidelines_NASKI_2018
  35. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331–2339. doi: 10.1016/j.biomaterials.2005.11.044
  36. Kalita SJ, Verma S. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater Sci Eng C Mater Biol Appl. 2010;30(2):295–303. doi: 10.1016/j.msec.2009.11.007
  37. Kasatov AV, Gorowitz ES. The value of various etiopathogens in the development of infectious complications after cardiac surgery with sternal access. Grekov’s Bulletin of Surgery. 2022;181(5):78–82. (In Russ.) doi: 10.24884/0042-4625-2022-181-5-78-82
  38. Rebeschenko AP, Kataeva LV, Stepanova TF, et al. Microbiota of environment objects and mucous membranes of upper respiratory tract of patients in infectious diseases department at national hospital of pediatrics in Hanoi, Vietnam. Zdorov’e Naseleniya i Sreda Obitaniya. 2019;(1):51–54. (In Russ.) doi: 10.35627/2219-5238/2019-310-1-51-54
  39. Methods of sanitary and bacteriological studies of environmental objects, air and sterility control in medical organizations: FLOUR 4.2.2942–11. Moscow: Federal’nyi tsentr gossanepidnadzora Minzdrava Rossii; 2011. 12 p.
  40. Afanasiev NE, Pozdnyakova OYu. On the issue of providing medical assistance to patients with community-acquired pneumonia in rural hospitals of Stavropol territory. Practical Medicine. 2023;21(1):59–62. (In Russ.) doi: 10.32000/2072-1757-2023-1-59-62
  41. Stepanov NA, Rukosueva TV, Bochanova EN, et al. Assessment of healthcare workers’ smartphones for microbial contamination. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(1): 83–88. (In Russ.) doi: 10.36488/cmac.2022.1.83-88
  42. Gordinskaya NА, Boriskina EV, Kryazhev DV. Antibiotic resistance as a virulence factor of opportunistic microorganisms. Zdorov’e Naseleniya i Sreda Obitaniya. 2021;(4(337)):50–56. (In Russ.) doi: 10.35627/2219-5238/2021-337-4-50-56
  43. Kanishchev V.V., Eremeeva N.I. Some scientific and practical aspects of the use of disinfectants in the practice of therapeutic and preventive organizations. Poliklinika. 2013;(4-2):104–110. (In Russ.) EDN: TOQZZF
  44. Goloshva EV, Markova KG, Aleshukina AV, et al. Monitoring the efficiency of modern disinfectants used in one of the hospitals in Rostov-on-Don. Glavnyi vrach Yuga Rossii. 2023;(1(87)):52–55. EDN: HMMCJT
  45. WHO global strategy for containment of antimicrobial resistance. 2001. Available from: https://iris.who.int/bitstream/handle/10665/91617/WHO_CDS_CSR_DRS_2001.2a._rus.pdf?sequence=1&isAllowed=y
  46. Vk D, Srikumar S, Shetty S, et al. Silent antibiotic resistance genes: A threat to antimicrobial therapy. Int J Infect Dis. 2019;79(1):20. doi: 10.1016/j.ijid.2018.11.063
  47. Movsesyan NA, Zhiltsov IV, Kabanova AA, et al. The dynamics analysis of maxillofacial infectious and inflammatory diseases causative agents prevalence and the changes in their sensitivity to antibiotics. Vitebsk Medical Journal. 2021;20(6):99–109. (In Russ.) doi: 10.22263/2312-4156.2021.6.99
  48. Mudritskaya TN, Zhukova NV, Kostyukova EA, Grigorenko EI. Once again about antibiotics, their safety and antibiotic resistance. Part 1. Krymskii terapevticheskii zhurnal. 2020;(4):12–17. (In Russ.) EDN: HXWLVF
  49. Mudritskaya TN, Zhukova NV, Kostyukova EA, Grigorenko EI. Once again about antibiotics, their safety and antibiotic resistance. Part 2. Krymskii terapevticheskii zhurnal. 2021;(1):20–25. (In Russ.) EDN: XGQQTV
  50. Tulakov EO, Azimov AA, Boltabayeva DF. Specific characteristics and antibiotic resistance of purulous inflammatory diseases. Ekonomika i sotsium. 2022;(2-2(93)):1156–1161. (In Russ.) EDN: LTZAVA
  51. Fominykh SG. The rating of medical errors in the use of antimicrobials: retrospective clinical pharmacological analysis. Clinical Microbiology and Antimicrobial Chemotherapy. 2017;19(1): 73–79. (In Russ.) EDN: ZHJQCP
  52. Łusiak-Szelachowska M, Weber-Dąbrowska B, Górski A. Bacteriophages and Lysins in Biofilm Control. Virol Sin. 2020;35(2):125–133. doi: 10.1007/s12250-019-00192-3.
  53. Aslanov BI, Dolgii AA. Bacteriophages in the treatment of infectious complications in hematology in conditions of global antibiotic resistance. Bulletin of Hematology. 2022;18(1):35. (In Russ.) EDN: YBEVWI
  54. Aslanov BI, Lubimova AV, Zueva LP. Bacteriophages as effective antiepidemic agents for control of hospital-acquired infection outbreaks. Journal Infectology. 2019;11(1):65–70. (In Russ.) doi: 10.22625/2072-6732-2019-11-1-65-70
  55. Aleshkin AV, Sel’kova EP, Ershova ON, et al. Concept of personalized phage therapy for intensive care unit patients with healthcare-associated infections. Fundamental and Clinical Medicine. 2018;3(2):66–74. (In Russ.) EDN: XRVBJB
  56. Daudova AD, Abdrakhmanova RO, Yasenyavskaya AL, et al. Prospects for Phagоtherapy of Bacterial Infections Associated with the Provision of Medical Care. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(11-12):56–63. (In Russ.) doi: 10.37489/0235-2990-2022-67-11-12-56-63
  57. Mezina EY, Dubinina AY, Kosyakova K.G. Phage resistance of staphylococcus aureus and coagulase-negative staphylococci. Zdorov’e — osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya. 2020;15(2):695–699. EDN: ANJJSI
  58. Ivanova MV, Mindlina AYa, Serebriy AB. The Necessity to Change the Approaches to the Registration of Healthcare-Associated Infections Newborns and Intrauterine Infections. Epidemiology and Vaccinal Prevention. 2019;18(2):104–112. (In Russ.) doi: 10.31631/2073-3046-2019-18-2-104-112
  59. Gelnina TP, Brusina EB. Efficiency of Epidemiological Monitoring in Prevention of Helhcare-Associated Infections. Epidemiology and Vaccinal Prevention. 2019;18(3):84–88. (In Russ.) doi: 10.31631/2073-3046-2019-18-3-84-88

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-vector

License URL: https://eco-vector.com/en/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80652 от 15.03.2021
. Учредитель ООО "Эко-Вектор Ай-Пи" (ОГРН 1157847215338).