Molecular patterns of neurodegeneration in coronavirus infection caused by SARS-CoV-2

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The reports on the neurological and psychiatric consequences of coronavirus infection are of particular relevance owing to their limited availability. The molecular patterns of nerve tissue damage are an important task for understanding the underlying mechanisms of neurodegeneration.

AIM: To study the dynamics of changes in the content of markers of neurodegeneration and neuroplasticity in patients with coronavirus infection in the acute and long-term periods.

MATERIALS AND METHODS: A total of 200 patients aged 51–83 years were assessed and categorized into two age groups: 51–65 years and 66–83 years. The levels of neurodegeneration markers were determined in the blood serum: neurofilament heavy chains (NEFH), S100 A6 protein, S100 B protein, β-amyloid 1-42 (Aβ1-42), microfilament associated tau protein (MAPt), serum amyloid P (SAP), and neuroplasticity: neurotrophin 3 (NT3), neurotrophin 4 (NT4). The study was performed thrice in the acute period of the disease at the time of admission to the hospital and at 6 and 12 months after discharge.

RESULTS: In the first group of patients, in the acute period of coronavirus infection, women showed higher concentrations of S100 A6 (3.2±0.2), S100 B (0.4±0.06), NT3 (1.1±0.1), and MAPt (0.13±0.02), while the values for the men were NEFH (0.15±0.03), Aβ1-42 (2.1±0.1), and SAP (4.5±0.06). In the long-term, a general tendency of long persistence of high levels of the markers of neurodegeneration and neuroprotection was noted in young men compared to women, indicating a long period of rehabilitation. After 12 months, the level of calcium-binding proteins S100 A6 and S100 B in men was 1.5±0.2 pg/mL and 0.3±0.04 ng/mL, which was 1.1±0.1 pg/mL and 0.2±0.04 ng/mL, respectively, in women. The level of SAP in men during the long-term period after 12 months was 4.3±0.1 versus 3.9±0.2 ng/mL in women, indicating a significant difference.

Analyses of the results for the patients in the second group indicated a higher level of S100 A6 and Aβ1-42 in the acute period for women, while men showed higher levels of S100 B, NT3, and SAP.

CONCLUSION: The changes in patients with coronavirus infection both in the acute and late periods indicated active neurodegeneration processes in different age groups, which manifested as a result of an increase in the concentration of specific proteins in the blood serum.

Full Text

Restricted Access

About the authors

Aleksandr O. Mikhailov

Pacific State Medical University; Regional Clinical Hospital No. 2

Author for correspondence.
Email: mao1991@mail.ru
ORCID iD: 0000-0002-2719-3629
SPIN-code: 1469-9086

MD, Cand. Sci. (Med.)

Russian Federation, 2 Ostryakova Prospekt, 690002 Vladivostok; Vladivostok

Natalia G. Plekhova

Pacific State Medical University

Email: pl_nat@hotmail.com
ORCID iD: 0000-0002-8701-7213
SPIN-code: 2685-9578

Dr. Sci. (Biol.), Associate Professor

Russian Federation, 2 Ostryakova Prospekt, 690002 Vladivostok

Svetlana A. Sokotun

Pacific State Medical University; Pacific State Medical University

Email: sokotun.s@mail.ru
ORCID iD: 0000-0003-3807-3259
SPIN-code: 8744-2166

MD, Cand. Sci. (Med.)

Russian Federation, 2 Ostryakova Prospekt, 690002 Vladivostok; Vladivostok

Anna I. Simakova

Pacific State Medical University; Regional Clinical Hospital No. 2

Email: anna-inf@yandex.ru
ORCID iD: 0000-0002-3334-4673
SPIN-code: 3563-7054

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, 2 Ostryakova Prospekt, 690002 Vladivostok; Vladivostok

Anastasia S. Bedareva

Pacific State Medical University

Email: nastya.bedareva.99@mail.ru
ORCID iD: 0000-0003-0815-9959
SPIN-code: 1405-7610

Student

Russian Federation, 2 Ostryakova Prospekt, 690002 Vladivostok

References

  1. Shashel VA, Podporina LA, Pervishko OV. Effectiveness of the rehabilitation program for schoolchildren with autonomic dysfunction syndrome after respiratory infections. Child Adolescent Rehabilitat. 2017;(2):27–30. (In Russ).
  2. Chandra A, Johri A. A peek into Pandora’s box: COVID-19 and neurodegeneration. Brain Sci. 2022;12(2):190. doi: 10.3390/brainsci12020190
  3. Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Therapy. 2020;12(1):69. doi: 10.1186/s13195-020-00640-3
  4. Rodriguez M, Soler Y, Perry M, et al. Impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the nervous system: Implications of COVID-19 in neurodegeneration. Front Neurol. 2020;(11);583459. doi: 10.3389/fneur.2020.583459
  5. Mahalakshmi AM, Ray B, Tuladhar S, et al. Does COVID-19 contribute to development of neurological disease? Immun Inflamm Dis. 2021;9(1):48–58. doi: 10.1002/iid3.387
  6. Krasemann S, Haferkamp U, Pfefferle S, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports. 2022;17(2):307–320. doi: 10.1016/j.stemcr.2021.12.011
  7. Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virology. 2020;92(7):699–702. doi: 10.1002/jmv.25915
  8. Malashenkova IK, Khailov NA, Krynsky SA, et al. The effects of neurotrophic therapy on systemic inflammation, the levels of BDNF, IGF-2, and Nt-4 in the syndrome of mild cognitive impairment. Meditsinskaya Immunologiya. 2017;19(S):289. (In Russ).
  9. Janiszewski SN. COVID-19, cerebrovascular pathology and neurodegeneration. The main regularities and possible therapy. Nerve Dis. 2022;(3):16–23. (In Russ). doi: 10.24412/2226-0757-2022-12906
  10. Provisional guidelines “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)”. Version 10. (Accessed: 08.02.2021). Moscow; 2012. 262 p. (In Russ).
  11. Grzybowski AM. Data types, validation of distribution and descriptive statistics. Human Ecology. 2008;(1):52–58. (In Russ).
  12. Leonov VP. Error statistical analysis of biomedical data. Int J Med Pract. 2007;(2):19–35. (In Russ).
  13. Rebrova OY. Statistical analysis of medical data. The application of the STATISTICA software package. Moscow: Media Sfera; 2002. 312 р. (In Russ).
  14. Bubak AN, Beseler C, Como CN, et al. Amylin, Aβ42, and amyloid in varicella Zoster virus vasculopathy cerebrospinal fluid and infected vascular cells. The J Infectious Dis. 2021;223(7): 1284–1294. doi: 10.1093/infdis/jiaa513
  15. Ziff OJ, Ashton NJ, Mehta PR, et al. Amyloid processing in COVID-19-associated neurological syndromes. J Neurochemistry. 2022;161(2):146–157. doi: 10.1111/jnc.15585
  16. Matveeva MV, Samoylova YG, Zhukova N, et al. Taupathy and cognitive impairment in experimental diabetes mellitus. Diabetes Mellitus. 2017;20(3):181–184. (In Russ). doi: 10.14341/2072-0351-5842
  17. Dobrindt K, Hoagland DA, Seah C, et al. Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection. Stem Cell Rep. 2021;16(3):505–518. doi: 10.1016/j.stemcr.2021.02.010
  18. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care. 2020;24(1):353. doi: 10.1186/s13054-020-03062-7
  19. Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135. doi: 10.1084/jem.20202135
  20. Fenrich M, Mrdenovic S, Balog M, et al. SARS-CoV-2 dissemination through peripheral nerves explains multiple organ injury. Front Cell Neurosci. 2020;(14):229.
  21. Pizzanelli C, Milano C, Canovetti S, et al. Autoimmune limbic encephalitis related to SARS-CoV-2 infection: Case-report and review of the literature. Brain Behav Immun Health. 2021;(12):100210. doi: 10.1016/j.bbih.2021.100210
  22. Chertok VM, Chertok AG. Regulatory potential of brain capillaries. Pacific Med J. 2016;(2):72–80. (In Russ). doi: 10.17238/1609-1175.2016.2.72
  23. Chekhov VP, Lebedev SV, Blinov DV, et al. The pathogenetic role of impaired permeability of the blood-brain barrier for neurospecific proteins in perinatal hypoxic-ischemic lesions of the central nervous system in newborns. Questions Gynecol Obstetrics Perinatol. 2004;3(2):50–61. (In Russ).
  24. Zhavoronok TV, Ryazantseva NV, Stepovaya EA, et al. Changes in the content of calcium ions and expression of apoptosis regulatory proteins in tissue hypoxia. Int J Exp Educat. 2013; (4-2):152–153. (In Russ).
  25. Kuznik BI, Khavinson VH, Linkova NS. COVID-19: Influence on immunity, hemostasis system and possible ways of correction. Uspekhi Fiziologicheskikh Nauk. 2020;51(4):51–63. (In Russ).
  26. Gomazkov OA. Neurotrophic and growth factors of the brain: Regulatory specificity and therapeutic potential. Successes Physiological Sci. 2005;36(2):22–40. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 014448 от 08.02.1996
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80652 от 15.03.2021
.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies