Particular qualities of laboratory approaches in complex diagnosis of human brucellosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Brucellosis is an infectious particularly dangerous zoonotic disease caused by bacteria of the genus Brucella, among which B. melitensis, B. abortus, and B. suis have pathogenic potential, causing a severe and often chronic course of the disease.

Laboratory diagnostics is crucial for the detection of human cases, since the clinical symptoms of human brucellosis are variable and nonspecific. Laboratory diagnosis of brucellosis is based on three different approaches: direct bacteriological method, indirect method using serological and allergic tests and direct express method in different formats of molecular polymerase chain reaction.

Despite the accumulated experience of using serological tests and the highly sensitive polymerase chain reaction method, the isolation of Brucella culture is considered the gold standard in the laboratory diagnosis of brucellosis due to its clinical and epidemiological relevance. The currently available automated systems of the bacteriological method have increased its sensitivity and shortened the detection time of Brucella species.

The main limitations of serological tests are the lack of general interpretation criteria, low specificity due to cross-reactions with other bacteria and low sensitivity at an early stage of the disease. At the same time, in Russia, serological tests account for more than 99% of all laboratory tests and remain the main diagnostic tool. This is due to their inexpensive and convenient use at the place of medical care in endemic areas and high negative prognostic value.

Polymerase chain reaction in various formats of rapid tests diagnoses the DNA of the pathogen in a few hours with high sensitivity and specificity. Nevertheless, a positive polymerase chain reaction result requires careful interpretation and does not necessarily indicate an active infection.

For the convenience of using diagnostic approaches to brucellosis in practical medicine and determining the activity of the infectious process, it is necessary to improve diagnostics and develop express methods.

The review shows both the most routine and modern laboratory methods currently available for laboratory diagnosis of brucellosis.

Full Text

Restricted Access

About the authors

Yuri K. Kulakov

N.F. Gamaleya Federal Research Centre of Epidemiology and Microbiology

ORCID iD: 0000-0002-4482-9369
SPIN-code: 7720-0692

MD, Cand. Sci. (Med.)

Russian Federation, 18, Gamalei street, Moscow, 123098

Asiyat A. Dalgatova

Charodinskaya Central District Hospital

ORCID iD: 0000-0002-7414-4360


Russian Federation, Tsurib village, Charodinsky district, 368450 RD

Olga A. Burgasova

N.F. Gamaleya Federal Research Centre of Epidemiology and Microbiology; Peoples' Friendship University of Russia

Author for correspondence.
ORCID iD: 0000-0002-5486-0837
SPIN-code: 5103-0451

MD, Dr. Sci. (Med.), Professor

Russian Federation, 18, Gamalei street, Moscow, 123098; 6, Miklukho-Maklaya Street, Moscow, 117198

Valeria V. Bacalin

Peoples' Friendship University of Russia

ORCID iD: 0000-0002-0491-9925
SPIN-code: 5549-1731

Resident of the Department of Infectious Diseases with courses in Epidemiology and Phthisiology

Russian Federation, 6, Miklukho-Maklaya Street, Moscow, 117198


  1. Khachaturova AA, Ponomarenko DG, Kovalev DA, et al. Analysis of the incidence of brucellosis in humans and molecular biological characteristics of Brucella melitensis isolates in long-term brucellosis-affected territories of the south of the European part of Russia. J Microbiol Epidemiol Immunobiol. 2022;99(1):63–74. (In Russ). doi: 10.36233/0372-9311-185
  2. Maletskaya OV, Ponomarenko DG, Manin EA, et al. Brucellosis. The current state of the problem scientific publication. Onishchenko G.G., Kulichenko A.N., editors. Stavropol: Guberniya; 2019. 345 р. (In Russ).
  3. Kulakov YuK. Molecular aspects of brucella persistence. Mol Gen Microbiol Virology. 2016;34(1):3–8. (In Russ). doi: 10.18821/0208-0613-2016-34-1-3-8
  4. Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. Lancet Infect Dis. 2006;6(2):91–99. doi: 10.1016/S1473-3099(06)70382-6
  5. Zheludkov MM. Brucellosis in Russia: modern epidemiology and laboratory diagnostics [dissertation abstract]. Moscow; 2009. 50 р. (In Russ).
  6. Sannikova IV, Popov PN, Pavlova OM, et al. Brucellosis (clinic, diagnosis, treatment, organization of medical care): methodical manual for infectious diseases and general practitioners. Stavropol; 2015. 84 р. (In Russ).
  7. Di Bonaventura G, Angeletti S, Ianni A, et al. Microbiological laboratory diagnosis of human brucellosis: an overview. Pathogens. 2021;10(12):1623. doi: 10.3390/pathogens10121623
  8. MUC Epidemiological surveillance and laboratory diagnosis of brucellosis: Guidelines. Moscow: Federal Center of Hygiene and Epidemiology of Rospotrebnadzor; 2017. 60 p. (In Russ).
  9. Malov VA. Therapeutic masks of brucellosis. Pharmateca. 2011;(4):22–28. (In Russ).
  10. Baron EJ, Weinstein MP, Dunne WM, et al. Cumitech 1C. Blood cultures IV. Baron E.J., editor. Washington, DC: ASM Press; 2005.
  11. Yagupsky P. Use of the BACTEC MYCO/FLYTIC medium for detection of Brucella melitensis bacteremia. J Clin Microbiol. 2004; 42(5):2207–2208. doi: 10.1128/jcm.42.5.2207-2208.2004
  12. Sagi M, Nesher L, Yagupsky P. The Bactec FX blood culture system detects Brucellamelitensis bacteremia in adult patients within the routine 1-week incubation period. J Clin Microbiol. 2017; 55(3):942–946. doi: 10.1128/JCM.02320-16
  13. Ayaslioglu E, Kiliс D, Kaygusuz S, et al. The detection of Brucella spp. by BACTEC 9050 blood culture system. Mikrobiyol Bul. 2004;38:415–419. (In Turkish).
  14. Al-Attas RA, Al-Khalifa M, Al-Qurashi AR, et al. Evaluation of PCR, culture and serology for the diagnosis of acute human brucellosis. Ann Saudi Med. 2000;20(3-4):224–228. doi: 10.5144/0256-4947.2000.224
  15. Kazemi S, Borzoueisileh S, Ebrahimpour S. Evaluation of brucellosis in patients and diagnostic tests. Online J Anim Feed Res. 2015;4(3):60–66. doi: 10.5829/idosi.aejaes.2015.15.3.92127
  16. Ratushna VG, Stugrill DM, Ramamoorthy S, et al. Molecular targets for rapid identification of Brucella spp. Bio Med Central Microbiology. 2006;6:13. doi: 10.1186/1471-2180-6-13
  17. Kulakov YuK, Zheludkov MM, Tolmacheva TA, Tsirelson LE. The PCR method in laboratory diagnosis of brucellosis. Epidemiol Vaccination. 2010;(2):29–33. (In Russ).
  18. Whatmore AM, Koylass MS, Muchowski J, et al. Extended multilocus sequence analysis to describe the global population structure of the genus Brucella: phylogeography and relationship to biovars. Front Microbiol. 2016;7:2049. doi: 10.3389/fmicb.2016.02049
  19. Gopaul KK, Koylass MS, Smith CJ, et al. Rapid identification of Brucella isolates to the species level by real time PCR based single nucleotide polymorphism (SNP) analysis. BMC Microbiology. 2008;8:86. doi: 10.1186/1471-2180-8-86
  20. Al Dahouk S, Le Fleche P, Nockler K, et al. Evaluation of Brucella MLVA typing for human brucellosis. J Microbiol Methods. 2007;69(1):137–145. doi: 10.1016/j.mimet.2006.12.015
  21. Kulakov YuK, Kovalev DA, Misetova EN, et al. The use of multiple locus variable tandem repeats analysis in the systematics of the causative agent of brucellosis. Mol Gen Microbiol Virology. 2012;30(2):30–34. (In Russ).
  22. Vergnaud G, Hauck Y, Christiany D, et al. Genotypic expansion within the population structure of classical Brucella species revealed by MLVA16 typing of 1404 Brucella isolates from different animal and geographic origins, 1974–2006. Front Microbiol. 2018;9(8): 1253–1262. doi: 10.3389/fmicb.2018.01545
  23. Kovalev DA, Kuznetsova IV, Zhirov AM, et al. Genetic typing of Brucella melitensis strains based on the analysis of the variability of INDEL loci. Epidemiol Inf Dis. 2022;12(1):81–86. (In Russ). doi: 10.18565/epidem.2022.12.1.81-6
  24. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61(1):100–111. doi: 10.1373/clinchem.2014.221770
  25. Lista F, Reubsaet FA, De Santis R, et al. Reliable identification at the species level of Brucella isolated with MALDI-TOF. BMC Microbiol. 2011;11:267. doi: 10.1186/1471-2180-11-267
  26. Karger A, Melzer F, Timke M, et al. Inter laboratory comparison of intact-cell matrix-assisted laser desorption ionization time of flight mass spectrometry results for identification and differentiation of Brucella spp. J Clin Microbiol. 2013;51(9):3123–3126. doi: 10.1128/JCM.01720-13
  27. Sali M, De Maio F, Tarantino M, et al. Rapid and safe one-step extraction method for the identification of Brucella strains at genus and species level by MALDI-TOF mass spectrometry. PLoS One. 2018;13(6):e0197864. doi: 10.1371/journal.pone.0197864
  28. Poonawala H, Marrs Conner T, Peaper DR. The brief case: misidentification of Brucella melitensis as Ochrobactrum anthropi by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). J Clin Microbio. 2018;l56(6):e00914-17. doi: 10.1128/JCM.00914-17
  29. Mesureur J, Arend S, Cellière B, et al. A MALDI-TOF MS database with broad genus coverage for species-level identification of Brucella. PLoS Negl Trop Dis. 2018;12(10):e0006874. doi: 10.1371/journal.pntd.0006874
  30. Ulshina DV, Kovalev OV, Bobrysheva, DG, et al. The use of time-of-flight mass spectrometry for the diagnosis of brucellosis and interspecific differentiation of Brucella spp. strains. Inf Diseases News Opinions Training. 2018;7(4):15–24. (In Russ). doi: 10.24411/2305-3496-2018-14002
  31. Al Dahouk S, Nöckler K. Implications of laboratory diagnosis on brucellosis therapy. Expert Rev Anti-Infect Ther. 2011;9(7):833–845. doi: 10.1586/eri.11.55.
  32. Ruiz-Mesa JD, Sánchez-Gonzalez J, Reguera JM, et al. Rose Bengal test: diagnostic yield and use for the rapid diagnosis of human brucellosis in emergency departments in endemic areas. Clin Microbiol Infect. 2005;11(3):221–225. doi: 10.1111/j.1469-0691.2004.01063.x
  33. Mantur B, Parande A, Amarnath S, et al. ELISA versus conventional methods of diagnosing endemic brucellosis. Am J Trop Med Hyg. 2010;83(2):314–318. doi: 10.4269/ajtmh.2010.09-0790
  34. Osoba AO, Balkhy H, Memish Z, et al. Diagnostic value of Brucella ELISA IgG and IgM in bacteremic and non-bacteremic patients with brucellosis. J Chem. 2001;13(Suppl. 1):54–59. doi: 10.1080/1120009x.2001.11782330
  35. Konopleva MV. Development of an automated quantitative agglutination test (ACAT) and its application for immunodetection of pathogens and diagnosis of infections [dissertation abstract]. Moscow; 2007. 42 р. (In Russ).
  36. De Weck AL, Sanz ML, Gamboa PM, et al. Nonsteroidal anti-inflammatory drug hypersensitivity syndrome: a multicenter study. II. Basophil activation by nonsteroidal anti-inflammatory drugs and its impact on pathogenesis. J Investig Allergol Clin Immunol. 2010;20(1):39–57.
  37. Ponomarenko DG, Logvinenko OV, Sarkisyan NS, et al. A new approach to the allergodiagnosis of brucellosis. Inf Immunity. 2013;3(1):89–92. (In Russ). doi: 10.15789/2220-7619-2013-1-89-92
  38. Sarkisyan NS, Ponomarenko DG, Logvinenko OV, et al. Intensity of specific sensitization and immune status in patients with brucellosis. Med Immunol. 2016;18(4):365–372. (In Russ). doi: 10.15789/1563-0625-2016-4-365-372
  39. Kostyuchenko MV, Ponomarenko DG, Rakitina EL, et al. The prospect of assessing the antigen reactivity of lymphocytes in vitro for the diagnosis of acute brucellosis. Inf Immunity. 2017;7(1):91–96. (In Russ). doi: 10.15789/2220-7619-2017-1-91-96
  40. Scholz HC, Vergnaud G. Molecular characterisation of Brucella species. Rev Sci Tech. 2013;32(1):149–162. doi: 10.20506/rst.32.1.2189
  41. Zerva L, Bourantas K, Mitka S, et al. Serum is the preferred clinical specimen for diagnosis of human brucellosis by PCR. J Clin Microbiol. 2001;39(4):1661–1664. doi: 10.1128/JCM.39.4.1661-1664.2001
  42. Sanjuan-Jimenez R, Colmenero JD, Morata P. Lessons learned with molecular methods targeting the BCSP-31 membrane protein for diagnosis of human brucellosis. Clin Chim Acta. 2017;469:1–9. doi: 10.1016/j.cca.2017.03.014
  43. Kattar MM, Zalloua PA, Araj GF, et al. Development and evaluation of real-time polymerase chain reaction assays on whole blood and paraffin embedded tissues for rapid diagnosis of human brucellosis. Diagn Microbiol Infect Dis. 2007;59(1):23–32. doi: 10.1016/j.diagmicrobio.2007.04.002
  44. Mitka S, Anetakis C, Souliou E, et al. Evaluation of different PCR assays for early detection of acute and relapsing brucellosis in humans in comparison with conventional methods. J Clin Microbiol. 2007;45(4):1211–1218. doi: 10.1128/JCM.00010-06
  45. El Kholy AA, Gomaa HE, El Anany MG, El Abd Rasheed E. Diagnosis of human brucellosis in Egypt by polymerase chain reaction. East Mediterr Health J. 2009;15(5):1068–1074. doi: 10.26719/2009.15.5.1068
  46. Baddour MM, Alkhalifa DH. Evaluation of three polymerase chain reaction techniques for detection of Brucella DNA in peripheral human blood. Can J Microbiol. 2008;54(5):352–357. doi: 10.1139/w08-017
  47. Al-Nakkas AF, Wright SG, Mustafa AS, Wilson S. Single-tube, nested PCR for the diagnosis of human brucellosis in Kuwait. Ann Trop Med Parasitol. 2002;96(4):397–403. doi: 10.1179/000349802125001203
  48. Bounaadja L, Albert D, Chénais B, et al. Real-time PCR for identification of Brucella spp: a comparative study of IS711, bcsp31, and per target genes. Vet Microbiol. 2009;137(1-2):156–164. doi: 10.1016/j.vetmic.2008.12.023
  49. Sanjuan-Jimenez R, Colmenero JD, Morata P. Lessons learned with molecular methods targeting the BCSP-31 membrane protein for diagnosis of human brucellosis. Clin Chim Acta. 2017;469:1–9. doi: 10.1016/j.cca.2017.03.014
  50. López-Goñi I, García-Yoldi D, Marín CM, et al. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J Clin Microbiol. 2008;46(10):3484–3487. doi: 10.1128/JCM.00837-08
  51. Colmenero JD, Reguera JM, Martos F, et al. Complications associated with Brucella melitensis infection: a study of 530 cases. Medicine (Baltimore). 1996;75(4):195–211. doi: 10.1097/00005792-199607000-00003
  52. Buzgan T, Karahocagil MK, Irmak H, et al. Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature. Int J Infect Dis. 2010;14(6):e469–e478. doi: 10.1016/j.ijid.2009.06.031
  53. Morata P, Queipo-Ortuño MI, Reguera JM, et al. Diagnostic yield of a PCR assay in focal complications of brucellosis. J Clin Microbiol. 2001;39(10):3743–3746. doi: 10.1128/JCM.39.10.3743-3746.2001
  54. Li M, Zhou X, Li J, et al. Real-time PCR assays for diagnosing brucellar spondylitis using formalin-fixed paraffin embedded tissues. Medicine (Baltimore). 2018;97(9):e0062. doi: 10.1097/MD.0000000000010062
  55. Sanjuan-Jimenez R, Colmenero JD, Bermúdez P, et al. Amplicon DNA melting analysis for the simultaneous detection of Brucella spp. and Mycobacterium tuberculosis complex. Potential use in rapid differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis. PLoS One. 2013;8(3):e58353. doi: 10.1371/journal.pone.0058353
  56. Vrioni G, Gartzonika C, Kostoula A, et al. Application of a polymerase chain reaction enzyme immunoassay in peripheral whole blood and serum specimens for diagnosis of acute human brucellosis. Eur J ClinMicrobiol Infect Dis. 2004;23(3):194–199. doi: 10.1007/s10096-003-1082-4
  57. Queipo-Ortuño MI, Colmenero JD, Reguera JM, et al. Rapid diagnosis of human brucellosis by SYBR green I-based real-time PCR assay and melting curve analysis in serum samples. Clin Microbiol Infect. 2005;11(9):713–718. doi: 10.1111/j.1469-0691.2005.01202.x
  58. Debeaumont C, Falconnet PA, Maurin M. Real-time PCR for detection of Brucella spp. DNA in human serum samples. Eur J ClinMicrobiol Infect Dis. 2005;24(12):842–845. doi: 10.1007/s10096-005-0064-0
  59. Surucuoglu S, El S, Ural S, et al. Evaluation of real-time PCR method for rapid diagnosis of brucellosis with different clinical manifestations. Pol J Microbiol. 2009;58(1):15–19.
  60. Queipo-Ortuño MI, Colmenero JD, Baeza G, Morata P. Comparison between light cycler real-time polymerase chain reaction (PCR) assay with serum and PCR-enzyme-linked immunosorbent assay with whole blood samples for the diagnosis of human brucellosis. Clin Infect Dis. 2005;40(2):260–264. doi: 10.1086/426818

Supplementary files

There are no supplementary files to display.

Copyright (c) 2022 Eco-vector

Свидетельство о регистрации СМИ № 014448 от 08.02.1996 г. выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор). 
Свидетельство о регистрации СМИ ЭЛ № ФС 77 - 80652 от 15.03.2021 г. выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies