On the structure of Laplacian characteristic polynomial of circulant graphs
- Autores: Kwon Y.S.1, Mednykh A.D.2, Mednykh I.A.3
- 
							Afiliações: 
							- Yeungnam University
- Sobolev Institute of Mathematics
- Novosibirsk State University
 
- Edição: Volume 515 (2024)
- Páginas: 34-39
- Seção: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647920
- DOI: https://doi.org/10.31857/S2686954324010059
- EDN: https://elibrary.ru/ZTWHOM
- ID: 647920
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The present work deals with the characteristic polynomial of Laplacian matrix for circulant graphs. We show that it can be decomposed into a finite product of algebraic function evaluated at the roots of a linear combination of Chebyshev polynomials. As an important consequence of this result we get the periodicity of characteristic polynomials evaluated at the prescribed integer values. Moreover, we can show that the characteristic polynomials of circulant graphs are always perfect squares up to explicitly given linear factors.
Texto integral
 
												
	                        Sobre autores
Y. Kwon
Yeungnam University
							Autor responsável pela correspondência
							Email: ysookwon@ynu.ac.kr
				                					                																			                												                	República da Coreia, 							Gyeongsan						
A. Mednykh
Sobolev Institute of Mathematics
														Email: smedn@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
I. Mednykh
Novosibirsk State University
														Email: ilyamednykh@mail.ru
				                					                																			                												                	Rússia, 							Novosibirsk						
Bibliografia
- Медных А.Д., Медных И.А. Об асимптотике и арифметических свойствах функции сложности циркулянтных графов // ДАН. 2018. Т. 479. Вып. 4. С. 363–367.
- Grunwald L.A., Mednykh I.A. The number of rooted forests in circulant graphs // Ars Math. Contemp. 2022. Vol. 22. No. 4. #P4.10. doi: 10.26493/1855-3974.2029.01d
- Медных А.Д., Медных И.А. Индекс Кирхгофа для циркулянтных графов и его асимптотика // ДАН. 2020. Т. 494. Вып. 1. С. 43–47.
- Liu Xg., Zhou Sm. Spectral characterizations of propeller graphs // Electron. J. Linear Algebra. 2014. Vol. 27. P. 19–38. doi: 10.13001/1081-3810.1603
- Liu Xg., Lu P. Laplacian spectral characterization of dumbbell graphs and theta graphs // Discrete Math. Algorithms Appl. 2016. Vol. 8. No. 2. 1650028. doi: 10.1142/S1793830916500282
- Neumaerker N. The arithmetic structure of discrete dynamical systems on the torus // PhD Thesis. Bielefeld: Univ. Bielefeld, 2012.
- Прасолов В.В. Многочлены. М.: МЦНМО, 2003. 335 с.
- Chebotarev P., Shamis E. Matrix forest theorem // arXiv:math/0602575. 2006.
- Knill O. Cauchy-Binet for pseudo-determinants // Linear Algebra Appl. 2014. Vol. 459. P. 522–547. doi: 10.1016/j.laa.2014.07.013
- Kelmans A.K., Chelnokov V.M. A certain polynomial of a graph and graphs with an extremal number of trees // J. Comb. Theory Ser. B. 1974. Vol. 16. P. 197–214. doi: 10.1016/ 0095-8956(74)90065-3
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
