On the structure of Laplacian characteristic polynomial of circulant graphs

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present work deals with the characteristic polynomial of Laplacian matrix for circulant graphs. We show that it can be decomposed into a finite product of algebraic function evaluated at the roots of a linear combination of Chebyshev polynomials. As an important consequence of this result we get the periodicity of characteristic polynomials evaluated at the prescribed integer values. Moreover, we can show that the characteristic polynomials of circulant graphs are always perfect squares up to explicitly given linear factors.

作者简介

Y. Kwon

Yeungnam University

编辑信件的主要联系方式.
Email: ysookwon@ynu.ac.kr
韩国, Gyeongsan

A. Mednykh

Sobolev Institute of Mathematics

Email: smedn@mail.ru
俄罗斯联邦, Novosibirsk

I. Mednykh

Novosibirsk State University

Email: ilyamednykh@mail.ru
俄罗斯联邦, Novosibirsk

参考

  1. Медных А.Д., Медных И.А. Об асимптотике и арифметических свойствах функции сложности циркулянтных графов // ДАН. 2018. Т. 479. Вып. 4. С. 363–367.
  2. Grunwald L.A., Mednykh I.A. The number of rooted forests in circulant graphs // Ars Math. Contemp. 2022. Vol. 22. No. 4. #P4.10. doi: 10.26493/1855-3974.2029.01d
  3. Медных А.Д., Медных И.А. Индекс Кирхгофа для циркулянтных графов и его асимптотика // ДАН. 2020. Т. 494. Вып. 1. С. 43–47.
  4. Liu Xg., Zhou Sm. Spectral characterizations of propeller graphs // Electron. J. Linear Algebra. 2014. Vol. 27. P. 19–38. doi: 10.13001/1081-3810.1603
  5. Liu Xg., Lu P. Laplacian spectral characterization of dumbbell graphs and theta graphs // Discrete Math. Algorithms Appl. 2016. Vol. 8. No. 2. 1650028. doi: 10.1142/S1793830916500282
  6. Neumaerker N. The arithmetic structure of discrete dynamical systems on the torus // PhD Thesis. Bielefeld: Univ. Bielefeld, 2012.
  7. Прасолов В.В. Многочлены. М.: МЦНМО, 2003. 335 с.
  8. Chebotarev P., Shamis E. Matrix forest theorem // arXiv:math/0602575. 2006.
  9. Knill O. Cauchy-Binet for pseudo-determinants // Linear Algebra Appl. 2014. Vol. 459. P. 522–547. doi: 10.1016/j.laa.2014.07.013
  10. Kelmans A.K., Chelnokov V.M. A certain polynomial of a graph and graphs with an extremal number of trees // J. Comb. Theory Ser. B. 1974. Vol. 16. P. 197–214. doi: 10.1016/ 0095-8956(74)90065-3

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024