On the structure of Laplacian characteristic polynomial of circulant graphs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present work deals with the characteristic polynomial of Laplacian matrix for circulant graphs. We show that it can be decomposed into a finite product of algebraic function evaluated at the roots of a linear combination of Chebyshev polynomials. As an important consequence of this result we get the periodicity of characteristic polynomials evaluated at the prescribed integer values. Moreover, we can show that the characteristic polynomials of circulant graphs are always perfect squares up to explicitly given linear factors.

About the authors

Y. S. Kwon

Yeungnam University

Author for correspondence.
Email: ysookwon@ynu.ac.kr
Korea, Republic of, Gyeongsan

A. D. Mednykh

Sobolev Institute of Mathematics

Email: smedn@mail.ru
Russian Federation, Novosibirsk

I. A. Mednykh

Novosibirsk State University

Email: ilyamednykh@mail.ru
Russian Federation, Novosibirsk

References

  1. Медных А.Д., Медных И.А. Об асимптотике и арифметических свойствах функции сложности циркулянтных графов // ДАН. 2018. Т. 479. Вып. 4. С. 363–367.
  2. Grunwald L.A., Mednykh I.A. The number of rooted forests in circulant graphs // Ars Math. Contemp. 2022. Vol. 22. No. 4. #P4.10. doi: 10.26493/1855-3974.2029.01d
  3. Медных А.Д., Медных И.А. Индекс Кирхгофа для циркулянтных графов и его асимптотика // ДАН. 2020. Т. 494. Вып. 1. С. 43–47.
  4. Liu Xg., Zhou Sm. Spectral characterizations of propeller graphs // Electron. J. Linear Algebra. 2014. Vol. 27. P. 19–38. doi: 10.13001/1081-3810.1603
  5. Liu Xg., Lu P. Laplacian spectral characterization of dumbbell graphs and theta graphs // Discrete Math. Algorithms Appl. 2016. Vol. 8. No. 2. 1650028. doi: 10.1142/S1793830916500282
  6. Neumaerker N. The arithmetic structure of discrete dynamical systems on the torus // PhD Thesis. Bielefeld: Univ. Bielefeld, 2012.
  7. Прасолов В.В. Многочлены. М.: МЦНМО, 2003. 335 с.
  8. Chebotarev P., Shamis E. Matrix forest theorem // arXiv:math/0602575. 2006.
  9. Knill O. Cauchy-Binet for pseudo-determinants // Linear Algebra Appl. 2014. Vol. 459. P. 522–547. doi: 10.1016/j.laa.2014.07.013
  10. Kelmans A.K., Chelnokov V.M. A certain polynomial of a graph and graphs with an extremal number of trees // J. Comb. Theory Ser. B. 1974. Vol. 16. P. 197–214. doi: 10.1016/ 0095-8956(74)90065-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences