AN ANALOGUE OF MAHLER’S TRANSFERENCE THEOREM FOR MULTIPLICATIVE DIOPHANTINE APPROXIMATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Khintchine’s and Dyson’s transference theorems can be very easily deduced from Mahler’s transference theorem. In the multiplicative setting an obstacle appears, which does not allow deducing the multiplicative transference theorem immediately from Mahler’s theorem. Some extra considerations are required, for instance, induction by the dimension. In this paper we propose an analogue of Mahler’s theorem which implies the multiplicative transference theorem immediately.

About the authors

O. N. German

Moscow Lomonosov State University; Moscow Center of Fundamental and Applied Mathematics

Author for correspondence.
Email: german.oleg@gmail.com
Russian Federation, Moscow; Russian Federation, Moscow

References

  1. Dyson F.J. On simultaneous Diophantine approximations // Proc. London Math. Soc. 1947. V. 49. № 2. P. 409–420.
  2. German O.N. Transference inequalities for multiplicative Diophantine exponents // Труды МИРАН. 2011. Т. 275. С. 227–239.
  3. Касселс Дж.В.С. Введение в теорию диофантовых приближений. М.: ИИЛ, 1961.
  4. Шмидт В. Диофантовы приближения. М.: “Мир”, 1983.
  5. German O.N. On Diophantine exponents and Khintchine’s transference principle // Moscow J. Comb. Number Theory. 2012. V. 2. № 2. P. 22–51.
  6. Герман О.Н., Евдокимов К.Г. Усиление теоремы переноса Малера // Изв. РАН. Сер. матем. 2015. Т. 79. № 1. С. 63–76.
  7. Mahler K. Ein Übertragungsprinzip für lineare Ungleichungen // Čas. Pešt. Mat. Fys. 1939. V. 68. P. 85–92.
  8. Mahler K. On compound convex bodies, I. Proc. London Math. Soc. 1955. V. 5. № 3. P. 358–379.
  9. Mahler K. On compound convex bodies. II. Proc. London Math. Soc. 1955. V. 5. № 3. P. 380–384.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 О.Н. Герман