AN ANALOGUE OF MAHLER’S TRANSFERENCE THEOREM FOR MULTIPLICATIVE DIOPHANTINE APPROXIMATION
- 作者: German O.N.1,2
- 
							隶属关系: 
							- Moscow Lomonosov State University
- Moscow Center of Fundamental and Applied Mathematics
 
- 期: 卷 510 (2023)
- 页面: 18-22
- 栏目: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647856
- DOI: https://doi.org/10.31857/S2686954323600015
- EDN: https://elibrary.ru/XHRKPY
- ID: 647856
如何引用文章
详细
Khintchine’s and Dyson’s transference theorems can be very easily deduced from Mahler’s transference theorem. In the multiplicative setting an obstacle appears, which does not allow deducing the multiplicative transference theorem immediately from Mahler’s theorem. Some extra considerations are required, for instance, induction by the dimension. In this paper we propose an analogue of Mahler’s theorem which implies the multiplicative transference theorem immediately.
作者简介
O. German
Moscow Lomonosov State University; Moscow Center of Fundamental and Applied Mathematics
							编辑信件的主要联系方式.
							Email: german.oleg@gmail.com
				                					                																			                												                								Russian Federation, Moscow; Russian Federation, Moscow						
参考
- Dyson F.J. On simultaneous Diophantine approximations // Proc. London Math. Soc. 1947. V. 49. № 2. P. 409–420.
- German O.N. Transference inequalities for multiplicative Diophantine exponents // Труды МИРАН. 2011. Т. 275. С. 227–239.
- Касселс Дж.В.С. Введение в теорию диофантовых приближений. М.: ИИЛ, 1961.
- Шмидт В. Диофантовы приближения. М.: “Мир”, 1983.
- German O.N. On Diophantine exponents and Khintchine’s transference principle // Moscow J. Comb. Number Theory. 2012. V. 2. № 2. P. 22–51.
- Герман О.Н., Евдокимов К.Г. Усиление теоремы переноса Малера // Изв. РАН. Сер. матем. 2015. Т. 79. № 1. С. 63–76.
- Mahler K. Ein Übertragungsprinzip für lineare Ungleichungen // Čas. Pešt. Mat. Fys. 1939. V. 68. P. 85–92.
- Mahler K. On compound convex bodies, I. Proc. London Math. Soc. 1955. V. 5. № 3. P. 358–379.
- Mahler K. On compound convex bodies. II. Proc. London Math. Soc. 1955. V. 5. № 3. P. 380–384.
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					