AN ANALOGUE OF MAHLER’S TRANSFERENCE THEOREM FOR MULTIPLICATIVE DIOPHANTINE APPROXIMATION

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Khintchine’s and Dyson’s transference theorems can be very easily deduced from Mahler’s transference theorem. In the multiplicative setting an obstacle appears, which does not allow deducing the multiplicative transference theorem immediately from Mahler’s theorem. Some extra considerations are required, for instance, induction by the dimension. In this paper we propose an analogue of Mahler’s theorem which implies the multiplicative transference theorem immediately.

Авторлар туралы

O. German

Moscow Lomonosov State University; Moscow Center of Fundamental and Applied Mathematics

Хат алмасуға жауапты Автор.
Email: german.oleg@gmail.com
Russian Federation, Moscow; Russian Federation, Moscow

Әдебиет тізімі

  1. Dyson F.J. On simultaneous Diophantine approximations // Proc. London Math. Soc. 1947. V. 49. № 2. P. 409–420.
  2. German O.N. Transference inequalities for multiplicative Diophantine exponents // Труды МИРАН. 2011. Т. 275. С. 227–239.
  3. Касселс Дж.В.С. Введение в теорию диофантовых приближений. М.: ИИЛ, 1961.
  4. Шмидт В. Диофантовы приближения. М.: “Мир”, 1983.
  5. German O.N. On Diophantine exponents and Khintchine’s transference principle // Moscow J. Comb. Number Theory. 2012. V. 2. № 2. P. 22–51.
  6. Герман О.Н., Евдокимов К.Г. Усиление теоремы переноса Малера // Изв. РАН. Сер. матем. 2015. Т. 79. № 1. С. 63–76.
  7. Mahler K. Ein Übertragungsprinzip für lineare Ungleichungen // Čas. Pešt. Mat. Fys. 1939. V. 68. P. 85–92.
  8. Mahler K. On compound convex bodies, I. Proc. London Math. Soc. 1955. V. 5. № 3. P. 358–379.
  9. Mahler K. On compound convex bodies. II. Proc. London Math. Soc. 1955. V. 5. № 3. P. 380–384.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© О.Н. Герман, 2023