AN ANALOGUE OF MAHLER’S TRANSFERENCE THEOREM FOR MULTIPLICATIVE DIOPHANTINE APPROXIMATION
- Autores: German O.N.1,2
- 
							Afiliações: 
							- Moscow Lomonosov State University
- Moscow Center of Fundamental and Applied Mathematics
 
- Edição: Volume 510 (2023)
- Páginas: 18-22
- Seção: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647856
- DOI: https://doi.org/10.31857/S2686954323600015
- EDN: https://elibrary.ru/XHRKPY
- ID: 647856
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Khintchine’s and Dyson’s transference theorems can be very easily deduced from Mahler’s transference theorem. In the multiplicative setting an obstacle appears, which does not allow deducing the multiplicative transference theorem immediately from Mahler’s theorem. Some extra considerations are required, for instance, induction by the dimension. In this paper we propose an analogue of Mahler’s theorem which implies the multiplicative transference theorem immediately.
Sobre autores
O. German
Moscow Lomonosov State University; Moscow Center of Fundamental and Applied Mathematics
							Autor responsável pela correspondência
							Email: german.oleg@gmail.com
				                					                																			                												                								Russian Federation, Moscow; Russian Federation, Moscow						
Bibliografia
- Dyson F.J. On simultaneous Diophantine approximations // Proc. London Math. Soc. 1947. V. 49. № 2. P. 409–420.
- German O.N. Transference inequalities for multiplicative Diophantine exponents // Труды МИРАН. 2011. Т. 275. С. 227–239.
- Касселс Дж.В.С. Введение в теорию диофантовых приближений. М.: ИИЛ, 1961.
- Шмидт В. Диофантовы приближения. М.: “Мир”, 1983.
- German O.N. On Diophantine exponents and Khintchine’s transference principle // Moscow J. Comb. Number Theory. 2012. V. 2. № 2. P. 22–51.
- Герман О.Н., Евдокимов К.Г. Усиление теоремы переноса Малера // Изв. РАН. Сер. матем. 2015. Т. 79. № 1. С. 63–76.
- Mahler K. Ein Übertragungsprinzip für lineare Ungleichungen // Čas. Pešt. Mat. Fys. 1939. V. 68. P. 85–92.
- Mahler K. On compound convex bodies, I. Proc. London Math. Soc. 1955. V. 5. № 3. P. 358–379.
- Mahler K. On compound convex bodies. II. Proc. London Math. Soc. 1955. V. 5. № 3. P. 380–384.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
