Influence of immunity intensity to opportunistic infections on in vitro fertilization efficiency

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The number of infertile couples and women seeking in vitro fertilization is on the rise worldwide. At the same time, the probability of pregnancy after one in vitro fertilization attempt is 25–40%. Among the various causes of in vitro fertilization failure, the impact of opportunistic infections remains underestimated.

AIMS: retrospective assessment of the dependence of the number of successful in vitro fertilization attempts on the intensity of immunity to opportunistic infections.

MATERIALS AND METHODS: On the basis of the Clinic of the Kuban State Medical University, from January 2020 to March 2021, 865 women aged 26 to 48 years with infertility, included in the assisted reproductive technology program, were observed. Before the in vitro fertilization procedure, all patients were examined by enzyme immunoassay (ELISA) and polymerase chain reaction for the presence of herpesvirus infections (herpes infection, cytomegalovirus infection) and toxoplasmosis. The study included 79 people with unexplained infertility with a history of one to four in vitro fertilization cycles and positive antibody titers [IgG (+), IgM (–)] to herpes simplex virus, cytomegalovirus, and toxoplasmosis. During the study, groups were formed depending on the presence of opportunistic infections and the number of unsuccessful in vitro fertilization attempts.

RESULTS: During the study, a dependense was established between the number of in vitro fertilization attempts and the level of the initial (before pregnancy) IgG to toxoplasma. A negative prognosis for the effectiveness of in vitro fertilization is most likely in the presence of high titers of IgG to toxoplasma (370.0±57.0 U/ml). In the case of herpes infection, there was a tendency to increase the number of necessary in vitro fertilization attempts to 3–4 in the group with higher herpes simplex virus IgG levels. The baseline IgG cytomegalovirus level was not directly related to the effectiveness of the in vitro fertilization procedure.

CONCLUSION: The study demonstrates the importance of determining the intensity of immunity to toxoplasma and herpes infection in preparation for in vitro fertilization, especially if there is a history of unsuccessful in vitro fertilization attempts or spontaneous abortion.

Full Text

Restricted Access

About the authors

Marina G. Avdeeva

Kuban State Medical University

Author for correspondence.
Email: avdeevam@mail.ru
ORCID iD: 0000-0002-4979-8768
SPIN-code: 2066-2690
Scopus Author ID: 6603810508
ResearcherId: AAM-4866-2020

MD, Dr. Sci. (Med.), Professor

Russian Federation, Krasnodar

Victoria A. Krutova

Kuban State Medical University; Clinic of Kuban State Medical University

Email: klinika@bagk-med.ru
ORCID iD: 0000-0002-9907-7491
SPIN-code: 1673-1155

MD, Dr. Sci. (Med.)

Russian Federation, Krasnodar; Krasnodar

Anna A. Konchakova

Kuban State Medical University; Clinic of Kuban State Medical University

Email: AAKK93@yandex.ru
ORCID iD: 0000-0002-2899-5084
SPIN-code: 7674-8090

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Krasnodar; Krasnodar

Anna V. Dudnikova

Clinic of Kuban State Medical University

Email: avdudnikova@yandex.ru
ORCID iD: 0000-0003-2601-7831
SPIN-code: 7480-1992

MD, Cand. Sci. (Med.)

Russian Federation, Krasnodar

Natalia S. Prosolupova

Clinic of Kuban State Medical University

Email: NatalyPro87@yandex.ru
ORCID iD: 0000-0003-1888-3991
SPIN-code: 1192-0437

MD

Russian Federation, Krasnodar

Ekaterina A. Konchakova

Kuban State Medical University

Email: konchakova01@mail.ru
ORCID iD: 0000-0002-5732-8328
SPIN-code: 1708-1267

Student

Russian Federation, Krasnodar

Alexander S. Omelchak

Kuban State Medical University

Email: omelchak.a00@mail.ru
ORCID iD: 0000-0003-2225-6210

Student

Russian Federation, Krasnodar

References

  1. Ismailova MK, Mehdieva YD. Pregnancy and childbirth after in vitro fertilization: features of the course. Electronic Med J Postgraduate Doctor. 2013;5(60):467–473. (In Russ).
  2. Korsak VS, Smirnova AA, Shurygina OV. ART Register of the Russian Association of Human Reproduction. Report for 2018. Reproduction Problems. 2021;27(2):6–20. (In Russ). doi: 10.17116/repro2021270216
  3. De Geyter C, Calhaz-Jorge C, Kupka MS, et al. ART in Europe, 2014: results generated from European registries by ESHRE: the European IVF-monitoring Consortium (EIM). for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod. 2018;33(9):1586–1601. doi: 10.1093/humrep/dey242
  4. Korsak VS, Dolgushina NV, Korneeva IE, et al. Female infertility. Clinical recommendations. Moscow; 2021. 81 р. (In Russ).
  5. Liu Y, Wu Y, Wang F, et al. The Association Between Previous TORCH Infections and Pregnancy and Neonatal Outcomes in IVF/ICSI-ET. A Retrospective Cohort Study. Front Endocrinol (Lausanne). 2020;11:466. doi: 10.3389/fendo.2020.00466
  6. Konchakova EA, Avdeeva MG, Konchakova AA, Dobriev HA. The effect of opportunistic infections on the effectiveness of in vitro fertilization in women with various types of infertility. Epidemiol Infectious Dis. 2020;25(1):18–25. (In Russ). doi: 10.17816/EID35182
  7. Konchakova A, Avdeeva MG, Kulbuzheva MI. An example of the treatment of acute acquired toxoplasmosis during pregnancy. Epidemiol Infectious Dis. 2016;2(21):99–102. (In Russ). doi: 10.17816/EID40912
  8. Ahmed M, Sood A, Gupta J. Toxoplasmosis in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2020;255:44–50. doi: 10.1016/j.ejogrb.2020.10.003
  9. Konchakova AA, Avdeeva MG. Toxoplasmosis: past and present (issues of diagnosis and treatment). Krasnodar: Parabellum; 2014. 72 р. (In Russ).
  10. Hampton MM. Congenital toxoplasmosis: a review. Neonatal Netw. 2015;34(5):274–278. doi: 10.1891/0730-0832.34.5.274
  11. Feldman DM, Keller R, Borgida AF. Toxoplasmosis, parvovirus, and cytomegalovirus in pregnancy. Clin Lab Med. 2016;36(2): 407–419. doi: 10.1016/j.cll.2016.01.011
  12. Al-Hindi A, Al-Helou T, Al-Helou Y. Seroprevalence of Toxoplasma gondii, cytomegalovirus, rubella virus and Chlamydia trachomatis among infertile women attending in vitro fertilization center, Gaza strip. Palestine. J Egypt Soc Parasitol. 2010;40(2):451–458.
  13. Carbone L, Conforti A, La Marca A, et al. The negative impact of most relevant infections on fertility and assisted reproduction technology. Minerva Obstet Gynecol. 2022;74(1):83–106. doi: 10.23736/S2724-606X.21.04870-3
  14. Avdeeva MG, Konchakova AA, Kotova NV, et al. Opportunistic infections and immunological deficiency in women with ineffective IVF cycles. Epidemiol Infectious Dis. 2017;22(4):183–189. (In Russ). doi: 10.18821/1560-9529-2017-22-4-183-189
  15. Smith NC, Goulart C, Hayward JA, et al. Control of human toxoplasmosis. Int J Parasitol. 2021;51(2-3):95–121. doi: 10.1016/j.ijpara.2020.11.001
  16. Mose JM, Kagira JM, Kamau DM, et al. A review on the present advances on studies of toxoplasmosis in Eastern Africa. Biomed Res Int. 2020:7135268. doi: 10.1155/2020/7135268
  17. Badr MS, Attia SS, El-Sherbiny WS, et al. Genetic polymorphism of Toxoplasma gondii from recently infected aborted egyptian women. J Egypt Soc Parasitol. 2016;46(1):49–55. doi: 10.12816/0026149
  18. Maani S, Rezanezhad H, Solhjoo K, et al. Genetic characterization of Toxoplasma gondii isolates from human spontaneous aborted fetuses in Jahrom, southern Iran. Microb Pathog. 2021;161 (Pt A):105217. doi: 10.1016/j.micpath.2021.105217
  19. Akarsu GA, Elhan HA, Akarsu C. Retrospective evaluation of Toxoplasma gondii seropositivity in fertile and infertile women. Mikrobiyol Bul. 2011;45(1):174–180. (In Turkish).
  20. Peyron F, Wallon M, Liou C, Garner P. Treatments for toxoplasmosis in pregnancy. Cochrane Database Syst Rev. 2000; 1999(2):CD001684. doi: 10.1002/14651858.CD001684

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme-design of the study.Note: ЭКО — in vitro fertilization; КНП — the number of required attempts to achieve a positive result in the form of a clinical pregnancy, culminating in the birth of a live child.

Download (474KB)
3. Fig. 2. Age composition of patients of the general group, years.

Download (176KB)
4. Fig. 3. Age composition of patients in groups with different outcomes of in vitro fertilization, years.

Download (274KB)
5. Fig. 4. The average level of IgG titers to toxoplasma with a different number of required in vitro fertilization attempts (NRA) to obtain a positive result in the form of an urgent delivery with the birth of a healthy child. ЭКО — in vitro fertilization.

Download (166KB)
6. Fig. 5. The average level of IgG titers to cytomegalovirus infection with a different number of required in vitro fertilization attempts to obtain a positive result in the form of an urgent delivery with the birth of a healthy child. ЭКО — in vitro fertilization.

Download (163KB)
7. Fig. 6. The average level of IgG titers to herpetic infection with a different number of required in vitro fertilization attempts (NRA) to obtain a positive result in the form of an urgent delivery with the birth of a healthy child. ЭКО — in vitro fertilization.

Download (163KB)

Copyright (c) 2021 Eco-vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 014448 от 08.02.1996
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80652 от 15.03.2021
.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies