OPTIMIZATION OF OSCILLATIONS OF MECHANICAL SYSTEMS WITH FRICTION
- 作者: Golubev Y.F.1
-
隶属关系:
- Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
- 期: 卷 512, 编号 1 (2023)
- 页面: 18-26
- 栏目: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647863
- DOI: https://doi.org/10.31857/S2686954323600052
- EDN: https://elibrary.ru/PKNCIY
- ID: 647863
如何引用文章
详细
A generalized method for finding optimal control of the amplitude of one-dimensional oscillations in the vicinity of the equilibrium position for a scleronomous multidimensional mechanical system with friction is proposed. The oscillatory degree of freedom of the system does not lend itself to direct control. Its movement is influenced by other, directly controlled degrees of freedom. They are being chosen as the control functions. The number of directly controlled coordinates can include both positional and cyclic coordinates. The method does not use conjugate variables in the sense of the Pontryagin’s maximum principle and does not increase the dimension of the original system of differential equations of motion. The effectiveness of the proposed method is demonstrated by the example of a specific oscillatory mechanical model with dry and viscous friction.
作者简介
Yu. Golubev
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
编辑信件的主要联系方式.
Email: golubev@keldysh.ru
Russian Federation, Moscow
参考
- Фантони И., Лозано Р. Нелинейное управление механическими системами с дефицитом управляющих воздействий. Перевод с франц. Ижевск: К-Динамика, 2012. 312 с. ISBN 978-5-906268-01-3.
- Tad McGeer. Passive Dynamic Walking. International Journal of Robotics Research. April, 1990. V. 9. № 2. P. 62–82, April, 1990.
- Формальский А.М. Управление движением неустойчивых объектов. М.: ФИЗМАТЛИТ, 2012. 232 с. ISBN 978-5-9221-1460-8.
- Климина Л.А., Формальский А.М. Об оптимальном раскачивании качелей стоящим на них человеком // Известия РАН. Теория и системы управления. 2022. № 6. С. 85–94. ISSN: 0002-3388. https://doi.org/10.31857/S0002338822060117
- Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1976. 393 с.
- Черноусько Ф.Л., Акуленко Л.Д., Соколов Б.Н. Управление колебаниями. М.: Наука. Главная редакция физико-математической литературы, 1980. 384 с.
- Охоцимский Д.Е., Энеев Т.М. Некоторые вариационные задачи, связанные с запуском искусственного спутника Земли. М.: Гос. Изд-во технико-теор. лит-ры. (Успехи физических наук. Т. 63. Вып. 1а). 1957. С. 5–32.
- Голубев Ю.Ф. Метод оптимального управления колебаниями механических систем // Препринты ИПМ им. М.В. Келдыша. 2021. № 33. 37 с. https://doi.org/10.20948/prepr-2021-33, https://library.keldysh.ru/preprint.asp?id=2021-33
- Golubev Yu.F. Optimal Control for Nonlinear Oscillations of Natural Mechanical Systems. // Lobachevskii J. Math. 2021. V. 42. № 11. P. 2596–2607. ISSN: 1995-0802https://doi.org/10.1134/S199508022111010X
- Голубев Ю.Ф. Оптимизация колебаний механических систем // Доклады Российской академии наук. Математика, информатика, процессы управления. 2022. Т. 502. С. 52–57. ISSN (PRINT): 2686-9543. https://doi.org/10.31857/S2686954322010040
- Голубев Ю.Ф. Управление амплитудой колебаний механических систем // Известия РАН. Теория и системы управления. 2022. № 4. С. 22–30. ISSN: 0002-3388. https://doi.org/10.31857/S0002338822040084
- Степанов В.В. Курс дифференциальных уравнений. Изд. 11, испр., обновл. М.: URSS. 2016. 512 с. ISBN 978-5-382-01622-1
补充文件
