Induced forests and trees in Erdös–Rényi random graph
- Autores: Akhmejanova M.B.1, Kozhevnikov V.S.2
-
Afiliações:
- King Abdullah University of Science and Technology
- Moscow Institute of Physics and Technology (National Research University)
- Edição: Volume 516, Nº 1 (2024)
- Páginas: 21-25
- Seção: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647944
- DOI: https://doi.org/10.31857/S2686954324020041
- EDN: https://elibrary.ru/XJAOZE
- ID: 647944
Citar
Resumo
We prove concentration in the interval of size for the size of the maximum induced forest (of bounded and unbounded degree) in for for arbitrary fixed . We also show 2-point concentration of the size of the maximum induced forest (and tree) of bounded degree in the binomial random graph for
Palavras-chave
Sobre autores
M. Akhmejanova
King Abdullah University of Science and Technology
Autor responsável pela correspondência
Email: margarita.akhmejanova@kaust.edu.sa
Arábia Saudita, KAUST
V. Kozhevnikov
Moscow Institute of Physics and Technology (National Research University)
Email: vladislavkozhevnikov@gmail.com
Rússia, Moscow
Bibliografia
- Bollobás B., Erdős P. Cliques in random graphs // Mathematical Proceedings of the Cambridge Philosophical Society. 1976. V. 80. P. 419–427.
- Fountoulakis N., Kang R.J., McDiarmid C. The t-stability number of a random graph // The Electronic Journal of Combinatorics. 2010. V. 17. P. 1–10.
- Fountoulakis N., Kang R.J., McDiarmid C. Largest sparse subgraphs of random graphs // European Journal of Combinatorics. 2014. V. 35. P. 232–244.
- Dutta K., Subramanian C.R. On Induced Paths, Holes and Trees in Random Graphs // 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics. 2018. P. 168–177.
- Kamaldinov D., Skorkin A., Zhukovskii M. Maximum sparse induced subgraphs of the binomial random graph with given number of edges // Discrete Mathematics. 2021. V. 344. P. 112205.
- Krivoshapko M., Zhukovskii M. Maximum induced forests in random graphs // Discrete Applied Mathematics. 2021. V. 305. P. 211–213.
- Frieze A.M. On the independence number of random graphs // Discrete Mathematics. 1990. V. 81. P. 171–175.
- Fernandez de la Vega W. The largest induced tree in a sparse random graph // Random Structures and Algorithms. 1996. V. 9. P. 93–97.
- Cooley O., Draganić N., Kang M., Sudakov B. Large Induced Matchings in Random Graphs // SIAM Journal on Discrete Mathematics. 2021. V. 35. P. 267–280.
- Draganić N., Glock S., Krivelevich M. The largest hole in sparse random graphs // Random Structures & Algorithms. 2022. V. 61. P. 666–677.
- Janson S., Łuczak T., Ruciński A. Random Graphs. John Wiley & Sons, Inc. 2000.
Arquivos suplementares
