Induced forests and trees in Erdös–Rényi random graph
- Authors: Akhmejanova M.B.1, Kozhevnikov V.S.2
- 
							Affiliations: 
							- King Abdullah University of Science and Technology
- Moscow Institute of Physics and Technology (National Research University)
 
- Issue: Vol 516 (2024)
- Pages: 21-25
- Section: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647944
- DOI: https://doi.org/10.31857/S2686954324020041
- EDN: https://elibrary.ru/XJAOZE
- ID: 647944
Cite item
Abstract
We prove concentration in the interval of size for the size of the maximum induced forest (of bounded and unbounded degree) in for for arbitrary fixed . We also show 2-point concentration of the size of the maximum induced forest (and tree) of bounded degree in the binomial random graph for
Keywords
Full Text
 
												
	                        About the authors
M. B. Akhmejanova
King Abdullah University of Science and Technology
							Author for correspondence.
							Email: margarita.akhmejanova@kaust.edu.sa
				                					                																			                												                	Saudi Arabia, 							KAUST						
V. S. Kozhevnikov
Moscow Institute of Physics and Technology (National Research University)
														Email: vladislavkozhevnikov@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Bollobás B., Erdős P. Cliques in random graphs // Mathematical Proceedings of the Cambridge Philosophical Society. 1976. V. 80. P. 419–427.
- Fountoulakis N., Kang R.J., McDiarmid C. The t-stability number of a random graph // The Electronic Journal of Combinatorics. 2010. V. 17. P. 1–10.
- Fountoulakis N., Kang R.J., McDiarmid C. Largest sparse subgraphs of random graphs // European Journal of Combinatorics. 2014. V. 35. P. 232–244.
- Dutta K., Subramanian C.R. On Induced Paths, Holes and Trees in Random Graphs // 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics. 2018. P. 168–177.
- Kamaldinov D., Skorkin A., Zhukovskii M. Maximum sparse induced subgraphs of the binomial random graph with given number of edges // Discrete Mathematics. 2021. V. 344. P. 112205.
- Krivoshapko M., Zhukovskii M. Maximum induced forests in random graphs // Discrete Applied Mathematics. 2021. V. 305. P. 211–213.
- Frieze A.M. On the independence number of random graphs // Discrete Mathematics. 1990. V. 81. P. 171–175.
- Fernandez de la Vega W. The largest induced tree in a sparse random graph // Random Structures and Algorithms. 1996. V. 9. P. 93–97.
- Cooley O., Draganić N., Kang M., Sudakov B. Large Induced Matchings in Random Graphs // SIAM Journal on Discrete Mathematics. 2021. V. 35. P. 267–280.
- Draganić N., Glock S., Krivelevich M. The largest hole in sparse random graphs // Random Structures & Algorithms. 2022. V. 61. P. 666–677.
- Janson S., Łuczak T., Ruciński A. Random Graphs. John Wiley & Sons, Inc. 2000.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted