On reconstruction of Kolmogorov operators with discontinuous coefficients

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We obtain broad sufficient conditions for reconstructing the coefficients of a Kolmogorov operator by means of a solution to the Cauchy problem for the corresponding Fokker–Planck–Kolmogorov equation. 

About the authors

V. I. Bogachev

Moscow State Lomonosov University; National Research University Higher School of Economics; Saint-Tikhon's Orthodox University

Author for correspondence.
Email: vibogach@mail.ru

Corresponding Member of the RAS

Russian Federation, Moscow; Moscow; Moscow

S. V. Shaposhnikov

Moscow State Lomonosov University; National Research University Higher School of Economics

Email: starticle@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Kolmogoroff A. // Math. Ann. 1931. B. 104. S. 415–458; русский пер.: Колмогоров А.Н. // Успехи матем. наук. 1938. Т. 5. С. 5–41.
  2. Богачев В.И., Рёкнер М., Шапошников С.В. // Теория вероятн. и ее примен. 2023. Т. 68. № 3. С. 420–455.
  3. Bogachev V.I., Krylov N.V., Röckner M., Shaposhnikov S.V. Fokker–Planck–Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015.
  4. Stroock D.W., Varadhan S.R.S. Multidimensional diffusion processes. Springer-Verlag, Berlin – New York, 1979.
  5. Rogers L.C.G., Williams D. Diffusions, Markov processes, and martingales. V. 2. Itô calculus. Cambridge University Press, Cambridge, 2000.
  6. Figalli A. // J. Funct. Anal. 2008. V. 254. N 1. P. 109–153.
  7. Trevisan D. // Electron. J. Probab. 2016. V. 21, Paper No. 22, 41 pp.
  8. Bogachev V.I., Röckner M., Shaposhnikov S.V. // J. Dynam. Differ. Equat. 2021. V. 33. N 2. P. 715–739.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences