COMPARISON OF THE COSTS FOR GENERATING THE TOLLMIEN-SCHLICHTING WAVES AND OPTIMAL DISTURBANCES USING OPTIMAL BLOWING–SUCTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of generating the Tollmien-Schlichting waves (leading eigenmodes) and optimal disturbances with a given accuracy using optimal blowing–suction is considered with the example of Poiseuille flow in a duct of square cross-section and streamwise-harmonic blowing-suction through the duct walls. The problem is reduced to solving optimal control problems for the linearized governing equations of viscous incompressible media. It is shown for the first time that generating the optimal disturbances using blowing–suction is much more expensive than generating the leading modes.

About the authors

K. V. Demyanko

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: kirill.demyanko@yandex.ru
Moscow, Russia; Moscow, Russia

Y. M. Nechepurenko

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: yumnech@yandex.ru
Moscow, Russia; Moscow, Russia

I. G. Chechkin

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: ivan.chechkin@math.msu.ru
Moscow, Russia; Moscow, Russia

References

  1. Boiko A. V., Dovgal A. V., Grek G. R., Kozlov V. V. Physics of transitional shear flows. Springer, Berlin, 2012.
  2. Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A. Spectral methods. Fundamentals in single domains. Springer, Berlin, 2006.
  3. Demyanko K. V., Nechepurenko Yu. M. Linear stability analysis of Poiseuille flow in a rectangular duct. Russ. J. Numer. Anal. Math. Modelling. 2013. V. 28. № 2. P. 125–148.
  4. Nechepurenko Yu. M. On the dimension reduction of linear differential-algebraic control systems // Doklady Mathematics. 2012. V. 86. P. 457–459.
  5. Tatsumi T., Yoshimura T. Stability of the laminar flow in a rectangular duct // J. Fluid Mech. 1990. V. 212. P. 437–449.
  6. Boiko A. V., Nechepurenko Yu. M. Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections // J. Comput. Math. Math. Phys. 2008. V. 48. № 10. P. 1–17.
  7. Boiko A. V., Nechepurenko Yu. M. Numerical study of stability and transient phenomena of Poiseuille flows in ducts of square cross-sections // Russ. J. Numer. Anal. Math. Modelling. 2009. V. 24. № 3. P. 193–205.
  8. Golub G. H., Van Loan C. F. Matrix computations. Johns Hopkins University Press, Baltimore, MD, thirded., 1996 (Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999).
  9. Nechepurenko Yu. M., Sadkan M. A low-rank approximation for computing the matrix exponential norm. SIAM J. Matr. Anal. Appl. 2011. V. 32. № 2. P. 349–363.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences