Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure
- Авторлар: Kovalevsky A.A.1,2
-
Мекемелер:
- Krasovskii Institute of Mathematics and Mechanics UB RAS
- Ural Federal University
- Шығарылым: Том 515, № 1 (2024)
- Беттер: 79-83
- Бөлім: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647945
- DOI: https://doi.org/10.31857/S2686954324010124
- EDN: https://elibrary.ru/ZTEUHE
- ID: 647945
Дәйексөз келтіру
Аннотация
We consider variational inequalities with invertible operators in divergence form and constraint set a.e. in where is a nonempty bounded open set in , , and are measurable functions. Under the assumptions that the operators G-converge to an invertible operator , , and there exist functions such that a.e. in and we establish the weak convergence in of the solutions of the specified variational inequalities to the solution of a similar variational inequality with the operator and the constraint set The fundamental difference between the considered case and the previously studied case, where is that, in general, the functionals do not converge to even weakly in and the energy integrals do not converge to .
Авторлар туралы
A. Kovalevsky
Krasovskii Institute of Mathematics and Mechanics UB RAS; Ural Federal University
Хат алмасуға жауапты Автор.
Email: alexkvl71@mail.ru
Ресей, Yekaterinburg; Yekaterinburg
Әдебиет тізімі
- Spagnolo S. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche // Ann. Sc. Norm. Super. Pisa. Cl. Sci. (3). 1968. Vol. 22. No. 4. P. 571–597.
- Жиков В.В., Козлов С.М., Олейник О.А., Ха Тьен Нгоан. Усреднение и G-сходимость дифференциальных операторов // УМН. 1979. Т. 34. № 5 (209). С. 65–133.
- Панков А.А. Об усреднении и G-сходимости нелинейных эллиптических операторов дивергентного вида // Докл. АН СССР. 1984. Т. 278. № 1. С. 37–41.
- Pankov A. G-Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. V. 422. Dordrecht: Kluwer Academic Publishers, 1997.
- Ковалевский А.А. G-сходимость и усреднение нелинейных эллиптических операторов дивергентного вида с переменной областью определения // Изв. РАН. Сер. матем. 1994. Т. 58. № 3. С. 3–35.
- Murat F. Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe p.p. dans . Publ. Laboratoire d’Analyse Numérique, No. 76013. Univ. Paris VI, 1976.
- Kovalevsky A.A. Convergence of solutions of nonlinear elliptic variational inequalities with measurable bilateral constraints // Results Math. 2023. Vol. 78. No. 4. Paper No. 145. 22 p. https://doi.org/10.1007/s00025-023-01921-7
- Dal Maso G., Defranceschi A. Convergence of unilateral problems for monotone operators // J. Anal. Math. 1989. Vol. 53. No 1. P. 269–289. https://doi.org/10.1007/BF02793418
- Boccardo L., Murat F. Homogenization of nonlinear unilateral problems / In: G. Dal Maso, G.F. Dell’Antonio (eds). Composite Media and Homogenization Theory, Prog. Nonlinear Differ. Equ. Appl. Vol. 5. Boston: Birkhäuser, 1991. P. 81–105.
- Kovalevsky A.A. Nonlinear variational inequalities with variable regular bilateral constraints in variable domains // Nonlinear Differ. Equ. Appl. 2022. Vol. 29. No. 6. Paper No. 70. 24 p. https://doi.org/10.1007/s00030-022-00797-w
- Evans L.C. Partial Differential Equations. Graduate Studies in Mathematics. Vol. 19. Providence, Rhode Island: American Mathematical Society, 1998.
- Lions J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, Gauthier-Villars, 1969.
Қосымша файлдар
