ESTIMATE FOR DOMAIN OF UNIVALENCE ON THE CLASS OF HOLOMORPHIC SELF-MAPS OF A DISC WITH TWO BOUNDARY FIXED POINTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Holomorphic self-maps of the unit disc with two boundary fixed points, one of which is a Denjoy–Wolff point are investigated. An upper estimate for domain of univalence is obtained for functions in such class, which depends on the value of the angular derivative at the repulsive boundary fixed point.

About the authors

V. V. Goryainov

Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: goryainov_vv@hotmail.com
Russian Federation, Moscow Region, Dolgoprudny

O. S. Kudryavtseva

Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics; Volgograd State Technical University

Author for correspondence.
Email: kudryavceva_os@mail.ru
Russian Federation, Moscow; Russian Federation, Volgograd

A. P. Solodov

Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics

Author for correspondence.
Email: apsolodov@mail.ru
Russian Federation, Moscow

References

  1. Landau E. Der Picard–Schottkysche Satz und die Blochsche Konstante // Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. 1926. V. 32. P. 467–474.
  2. Montel P. Leçons sur les fonctions univalentes ou multivalentes. Paris: Gauthier-Villars, 1933.
  3. Горяйнов В.В. Голоморфные отображения единичного круга в себя с двумя неподвижными точками // Матем. сб. 2017. Т. 208. № 3. 54–71.
  4. Голузин Г.М. Геометрическая теория функций комплексного переменного. M.: Наука, 1966.
  5. Denjoy A. Sur l’iteration des fonctions analytiques // C. R. Acad. Sci. Paris Sér. A. 1926. V. 182. P. 255–257.
  6. Wolff J. Sur l’itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette région // C. R. Acad. Sci. Paris Sér. A. 1926. V. 182. P. 42–43.
  7. Wolff J. Sur l’itération des fonctions bornées // C. R. Acad. Sci. Paris Sér. A. 1926. V. 182. P. 200–201.
  8. Валирон Ж. Аналитические функции. М.: ГИТТЛ, 1957.
  9. Ahlfors L.V. Conformal invariants: Topics in geometric function theory. New York: McGraw-Hill Book Company, 1973.
  10. Кудрявцева О.С., Солодов А.П. Двусторонние оценки областей однолистности классов голоморфных отображений круга в себя с двумя неподвижными точками // Матем. сб. 2019. Т. 210. № 7. 120–144.
  11. Солодов А.П. Точная область однолистности на классе голоморфных отображений круга в себя с внутренней и граничной неподвижными точками // Изв. РАН. Сер. матем. 2021. Т. 85. № 5. 190–218.
  12. Горяйнов В.В. Голоморфные отображения полосы в себя с ограниченным искажением на бесконечности // Тр. МИАН. 2017. Т. 298. 101–111.
  13. Кудрявцева О.С., Солодов А.П. Асимптотически точная двусторонняя оценка областей однолистности голоморфных отображений круга в себя с инвариантным диаметром // Матем. сб. 2020. Т. 211. № 11. 96–117.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (42KB)
3.

Download (42KB)
4.

Download (35KB)

Copyright (c) 2023 В.В. Горяйнов, О.С. Кудрявцева, А.П. Солодов