Aperiodical isoperimetric planar homogenization with critical diameter: universal non-local strange term for a dynamical unilateral boundary condition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the asymptotic behavior of the solution to the diffusion equation in a planar domain, perforated by tiny sets of different shapes with a constant perimeter and a uniformly bounded diameter, when the diameter of a basic cell ε goes to 0. This makes the structure of the heterogeneous domain aperiodical. On the boundary of the removed sets (or the exterior to a set of particles, as it arises in chemical engineering), we consider the dynamic unilateral Signorini boundary condition containing a large-growth parameter β(ε). We derive and justify the homogenized model when the problem’s parameters take the “critical values”. In that case, the homogenized is universal (in the sense that it does not depend on the shape of the perforations or particles) and contains a “strange term” given by a non-linear, non-local in time, monotone operator H that is defined as the solution to an obstacle problem for an ODE operator. The solution of the limit problem can take negative values even if, for any ε, in the original problem, the solution is non-negative on the boundary of the perforations or particles.

About the authors

J. I. Diaz

Institute of Interdisciplinary Mathematics, Complutense University of Madrid

Author for correspondence.
Email: jidiaz@ucm.es
Spain, Madrid

T. A. Shaposhnikova

Lomonosov Moscow State University

Email: shaposh.tan@mail.ru
Russian Federation, Moscow

A. V. Podolskiy

Lomonosov Moscow State University

Email: avpodolskiy@yandex.ru
Russian Federation, Moscow

References

  1. Bekmaganbetov K.A., Chechkin G.A., Chepyzov V.V. Attractors and a “strange term” in homogenized equation // Comptes Rendus Mecanique. 2020. V. 348. I. 5. P. 351–359.
  2. Cioranescu D., Murat F. Un terme étrange venu d’ailleurs // Nonlinear Part. Diff. Eq. Appl. 1982. V. 60. P. 98–138.
  3. Conca C., Murat F., Timofte C. A generalized strange term in Signorini’s type problems // ESAIM Math. Model. Numer. Anal. 2003. V. 57. I. 3. P. 773–805.
  4. Díaz J.I., Gómez-Castro D., Shaposhnikova T.A. Nonlinear Reaction-Diffusion Processes for Nanocomposites. Anomalous improved homogenization. Berlin. De Gruyter. 2021. P. 184. doi: https://doi.org/10.1515/9783110648997
  5. Díaz J.I., Podolskiy A.V., Shaposhnikova T.A. Unexpected regionally negative solutions of the homogenization of Poisson equation with dynamic unilateral boundary conditions: critical symmetric particles. // Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2023. V. 118. I. 9. https://doi.org/10.1007/s13398-023-01503-w
  6. Díaz J.I., Shaposhnikova T.A., Zubova M.N. A strange non-local monotone operator arising in the homogenization of a diffusion equation with dynamic nonlinear boundary conditions on particles of critical size and arbitrary shape // EJDE. 2022. V. 2022, No. 52, P. 1–32.
  7. Подольский А.В., Шапошникова Т.А. Усреднение параболического уравнения в перфорированной области с односторонним динамическим граничным условием: критический случай. Современная математика. Фундаментальные направления. Т. 68, № 4 (2022), С. 671–685.
  8. Jager W., Neuss-Radu M., Shaposhnikova T.A. Homogenization of a variational inequality for the Laplace operator with nonlinear restriction for the flux on the interior boundary of a perforated domain // Nonlinear Anal. Real World Appl. 2014. V. 15. P. 367–380.
  9. Sandrakov G. Homogenization of variational inequalities with the Signorini condition on perforated domains. // Doklady Mathematics. 2004. V. 70. No. 3. P. 941–944.
  10. Oleinik O.A., Shaposhnikova T.A. On homogenization problem for the Laplace operator in partially perforated domains with Neumann’s condition on the boundary of cavities // Rend. Mat. Acc. Lincei. 1995. V. 6. S. 9. P. 133–142.
  11. Пастухова С.Е. Усреднение смешанной задачи с условием Синьорини для эллиптического оператора в перфорированной области // Матем. сб. 2001. Т. 192. № 2. C. 87–102. https://doi.org/10.4213/sm544
  12. Anguiano M. Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media. // Mediterr. J. Math. 2020. V. 17. No. 1. P. 1–22.
  13. Timofte C. Parabolic problems with dynamical boundary conditions in perforated media // Math. Model. Anal. 2003. V. 8. P. 337–350.
  14. Перес Е., Шапошникова Т.А., Зубова М.Н. Задача усреднения в области, перфорированной мелкими изопериметрическими полостями с нелинейным краевым условием третьего типа на их границе // Доклады Академии Наук. 2014. Т. 457. № 5. C. 520–525. doi: 10.7868/S086956521423008X
  15. Díaz J.I., Gómez-Castro D., Timofte C. The effectiveness factor of reaction-diffusion equations: homogenization and existence of optimal pellet shapes // Journal of Elliptic and Parabolic Equations. 2016. V. 2. I. 1. P. 119–129.
  16. Caffarelli L.A., Mellet A. Random homogenization of an obstacle problem // Ann. l’Institut Henri Poincare Anal. Non Lineaire. 2009. V. 26. I. 2. P. 375–395.
  17. Wang W., Duan J. Homogenized Dynamics of Stochastic Partial Differential Equations with Dynamical Boundary Conditions // Commun. Math. Phys. 2007. V. 275. P. 163–186.
  18. Борисов Д.И., Мухаметрахимова А.И. Равномерная сходимость и асимптотики для задач в областях с мелкой перфорацией вдоль заданного многообразия в случае усредненного условия Дирихле // Матем. сб. 2021. Т. 212. № 8. C. 33–88.
  19. Лионс Ж.Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972. 587 с.
  20. Evans L.C. Partial Differential Equations. AMS, 2010. 749 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences