BICOMPACT SCHEMES FOR COMPRESSIBLE NAVIER–STOKES EQUATIONS
- 作者: Bragin M.D.1
-
隶属关系:
- Keldysh Institute of Applied Mathematics Russian Academy of Sciences
- 期: 卷 509, 编号 1 (2023)
- 页面: 17-22
- 栏目: MATHEMATICS
- URL: https://rjeid.com/2686-9543/article/view/647850
- DOI: https://doi.org/10.31857/S2686954322600677
- EDN: https://elibrary.ru/CRZYJT
- ID: 647850
如何引用文章
详细
For the first time, bicompact schemes are generalized to non-stationary Navier–Stokes equations for a compressible heat-conducting fluid. The proposed schemes have an approximation of the fourth order in space and the second order in time, are absolutely stable (in the frozen-coefficients sense), conservative, and efficient. One of the new schemes is tested on several two-dimensional problems. It is shown that when the mesh is refined, the scheme converges with an increased third order. A comparison is made with the WENO5-MR scheme. The superiority of the chosen bicompact scheme in resolving vortices and shock waves, as well as their interaction, is demonstrated.
作者简介
M. Bragin
Keldysh Institute of Applied Mathematics Russian Academy of Sciences
编辑信件的主要联系方式.
Email: michael@bragin.cc
Russia, Moscow
参考
- Толстых А.И. Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных. М.: Наука, 2015, 350 с.
- De La Llave Plata M., Couaillier V., Pape M.-C. // Comput. Fluids. 2018. V. 176. P. 320–337.
- Faranosov G.A., Goloviznin V.M., Karabasov S.A., Kondakov V.G., Kopiev V.F., Zaitsev M.A. // Comput. Fluids. 2013. V. 88. P. 165–179.
- Головизнин В.М., Четверушкин Б.Н. // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8. С. 20–29.
- Рогов Б.В., Михайловская М.Н. // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
- Михайловская М.Н., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2012. Т. 52. № 4. С. 672–695.
- Rogov B.V. // Appl. Numer. Math. 2019. V. 139. P. 136–155.
- Брагин М.Д., Рогов Б.В. // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 11. С. 1759–1778.
- Bragin M.D. // Appl. Numer. Math. 2022. V. 174. P. 112–126.
- Брагин М.Д. // Матем. моделирование. 2022. Т. 34. № 6. С. 3–21.
- Douglas J., Dupont T.F. // Numerical Solution of Partial Differential Equations II / ed. by B. Hubbard. Academic Press, 1971. P. 133–214.
- Duchemin L., Eggers J. // J. Comput. Phys. 2014. V. 263. P. 37–52.
- Wang H., Zhang Q., Wang S., Shu C.-W. // Sci. China Math. 2020. V. 63. P. 183–204.
- Shu C.-W. // Advanced Numerical Approximation of Nonlinear Hyperbolic Equations / ed. by A. Quarteroni, V. 1697 of Lecture Notes in Mathematics. Springer, 1998. P. 325–432.
- Daru V., Tenaud C. // Comput. Fluids. 2001. V. 30. P. 89–113.
- Bragin M.D., Rogov B.V. // Appl. Numer. Math. 2020. V. 151. P. 229–245.
- Wang Z., Zhu J., Tian L., Zhao N. // J. Comput. Phys. 2021. V. 429. P. 110006.
- Sjögreen B., Yee H.C. // J. Comput. Phys. 2003. V. 185. P. 1–26.
- Yee H.C., Sandham N.D., Djomehri M.J. // J. Comput. Phys. 1999. V. 150. P. 199–238.
