Research of Active Compounds from Allii Macrostemonis Bulbus and Potential Targets against Non-Hodgkins Lymphoma Based on Network Pharmacology
- Authors: Qiu X.1, Zhao Q.2, Qiu H.3, Cheng Y.3, Liu W.1, Yang L.2
-
Affiliations:
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital
- Department of Pharmacy, Fujian Medical University Union Hospital
- Issue: Vol 20, No 3 (2024)
- Pages: 291-302
- Section: Chemistry
- URL: https://rjeid.com/1573-4099/article/view/643998
- DOI: https://doi.org/10.2174/1573409919666230712144041
- ID: 643998
Cite item
Full Text
Abstract
Background:Non-Hodgkins Lymphoma (NHL) is a series of lymphoid malignancies in some aggressive subtypes with unsatisfactory treatment effects. Allii Macrostemonis Bulbus (Xie Bai) is a traditional Chinese medicine with anti-cancer activities, which may potentially suppress aggressive NHL.
Objective:This study tries to discover active components and targets of Xie Bai in treating NHL by network pharmacology-based approaches.
Methods:Compounds and related targets of Xie Bai were collected from the Traditional Chinese Medicine Database and Analysis Platform. Target genes associated with NHL were searched by GeneCards and DisGeNET, then the overlapped targets were further analyzed by STRING tool, GO, and KEGG pathway enrichment analysis. Molecular docking was employed to verify the interaction between compounds and targets.
Results:11 bioactive compounds were successfully identified, with 30 targets that were screened out for the treatment of NHL. Functional enrichment analysis suggested that Xie Bai exerted its potential effects against NHL via pathways in cancer, such as PI3K/ AKT, p53, and MAPK signaling pathways. Molecular docking results showed that 3 active compounds (quercetin, betasitosterol, and naringenin) had good affinity with selected 6 targets (TP53, AKT1, CASP3, CCND1, HPK1, and NLRP3).
Conclusion:Identifying six potential genes could accurately be docked with Xie Bai and had close interactions with NHL, which may provide insight into further research and new treatment strategy.
Keywords
About the authors
Xiuliang Qiu
Department of Pharmacy, Clinical Oncology School of Fujian Medical University
Email: info@benthamscience.net
QiuLing Zhao
Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital
Email: info@benthamscience.net
Hongqiang Qiu
Department of Pharmacy, Fujian Medical University Union Hospital
Email: info@benthamscience.net
Yu Cheng
Department of Pharmacy, Fujian Medical University Union Hospital
Email: info@benthamscience.net
WenBin Liu
Department of Pharmacy, Clinical Oncology School of Fujian Medical University
Email: info@benthamscience.net
Lin Yang
Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Mangal, N.; Salem, A.H.; Li, M.; Menon, R.; Freise, K.J. Relationship between response rates and median progression-free survival in non-Hodgkins lymphoma: A meta-analysis of published clinical trials. Hematol. Oncol., 2018, 36(1), 37-43. doi: 10.1002/hon.2463 PMID: 28707346
- Wang, Y.W.; Zhang, S.D.; Xue, W.J.; Zhu, M.L.; Zheng, L.Z. SHMT1 C1420T polymorphism contributes to the risk of non-Hodgkin lymphoma: Evidence from 7309 patients. Chin. J. Cancer, 2015, 34(3), 60. doi: 10.1186/s40880-015-0065-z PMID: 26666829
- Ribeiro, M.L.; Reyes-Garau, D.; Vinyoles, M.; Profitós Pelejà, N.; Santos, J.C.; Armengol, M.; Fernández-Serrano, M.; Sedó Mor, A.; Bech-Serra, J.J.; Blecua, P.; Musulen, E.; De La Torre, C.; Miskin, H.; Esteller, M.; Bosch, F.; Menéndez, P.; Normant, E.; Roué, G. Antitumor activity of the novel BTK inhibitor TG-1701 Is associated with disruption of ikaros signaling in patients with B-cell non-hodgkin lymphoma. Clin. Cancer Res., 2021, 27(23), 6591-6601. doi: 10.1158/1078-0432.CCR-21-1067 PMID: 34551904
- Ji, J.; Liu, Z.; Kuang, P.; Dong, T.; Chen, X.; Li, J.; Zhang, C.; Liu, J.; Zhang, L.; Shen, K.; Liu, T. A new conditioning regimen with chidamide, cladribine, gemcitabine and busulfan significantly improve the outcome of high‐risk or relapsed/refractory NON‐HODGKIN's lymphomas. Int. J. Cancer, 2021, 149(12), 2075-2082. doi: 10.1002/ijc.33761 PMID: 34398971
- Yoneshima, Y.; Morita, S.; Ando, M.; Nakamura, A.; Iwasawa, S.; Yoshioka, H.; Goto, Y.; Takeshita, M.; Harada, T.; Hirano, K.; Oguri, T.; Kondo, M.; Miura, S.; Hosomi, Y.; Kato, T.; Kubo, T.; Kishimoto, J.; Yamamoto, N.; Nakanishi, Y.; Okamoto, I. Phase 3 Trial comparing nanoparticle albumin-bound paclitaxel With docetaxel for previously treated advanced NSCLC. J. Thorac. Oncol., 2021, 16(9), 1523-1532. doi: 10.1016/j.jtho.2021.03.027 PMID: 33915251
- Lassaletta, A.; Scheinemann, K.; Zelcer, S.M.; Hukin, J.; Wilson, B.A.; Jabado, N.; Carret, A.S.; Lafay-Cousin, L.; Larouche, V.; Hawkins, C.E.; Pond, G.R.; Poskitt, K.; Keene, D.; Johnston, D.L.; Eisenstat, D.D.; Krishnatry, R.; Mistry, M.; Arnoldo, A.; Ramaswamy, V.; Huang, A.; Bartels, U.; Tabori, U.; Bouffet, E. Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: A canadian pediatric brain tumor consortium study. J. Clin. Oncol., 2016, 34(29), 3537-3543. doi: 10.1200/JCO.2016.68.1585 PMID: 27573663
- Yang, W.; Cai, J.; Shen, S.; Gao, J.; Yu, J.; Hu, S.; Jiang, H.; Fang, Y.; Liang, C.; Ju, X.; Wu, X.; Zhai, X.; Tian, X.; Wang, N.; Liu, A.; Jiang, H.; Jin, R.; Sun, L.; Yang, M.; Leung, A.W.K.; Pan, K.; Zhang, Y.; Chen, J.; Zhu, Y.; Zhang, H.; Li, C.; Yang, J.J.; Cheng, C.; Li, C.K.; Tang, J.; Zhu, X.; Pui, C.H. Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): An open-label, multicentre, randomised, phase 3, non-inferiority trial. Lancet Oncol., 2021, 22(9), 1322-1332. doi: 10.1016/S1470-2045(21)00328-4 PMID: 34329606
- Yao, Z.H.; Qin, Z.F.; Dai, Y.; Yao, X.S. Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chin. J. Nat. Med., 2016, 14(7), 481-498. doi: 10.1016/S1875-5364(16)30058-9 PMID: 27507199
- Lai, Q.K.; Tao, R.L.; Zhao, Y.J.; Zi, R.F.; He, Q. Advances in study of anticancer properties of Allii Macrostemonis Bulbus. Zhongguo Zhongyao Zazhi, 2015, 40(24), 4811-4816. PMID: 27245027
- Leung, E.L.; Cao, Z.W.; Jiang, Z.H.; Zhou, H.; Liu, L. Network-based drug discovery by integrating systems biology and computational technologies. Brief. Bioinform., 2013, 14(4), 491-505. doi: 10.1093/bib/bbs043 PMID: 22877768
- Zhao, S.; Iyengar, R. Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 505-521. doi: 10.1146/annurev-pharmtox-010611-134520 PMID: 22235860
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
- Lv, X.; Xu, Z.; Xu, G.; Li, H.; Wang, C.; Chen, J.; Sun, J. Investigation of the active components and mechanisms of Schisandra chinensis in the treatment of asthma based on a network pharmacology approach and experimental validation. Food Funct., 2020, 11(4), 3032-3042. doi: 10.1039/D0FO00087F PMID: 32186565
- Consortium, U.P. The UniProt consortium: Reorganizing the protein space at the universal protein resource (UniProt). Nucleic Acids Res., 2012, (D1), D1.
- Stelzer, G; Rosen, N; Plaschkes, I; Zimmerman, S; Twik, M; Fishilevich, S The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016, 54, 1.30.1-1.30.33.
- Bauer-Mehren, A.; Rautschka, M.; Sanz, F.; Furlong, L.I. DisGeNET: A Cytoscape plugin to visualize, integrate, search and analyze genedisease networks. Bioinformatics, 2010, 26(22), 2924-2926. doi: 10.1093/bioinformatics/btq538 PMID: 20861032
- Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol., 2011, 696, 291-303. doi: 10.1007/978-1-60761-987-1_18 PMID: 21063955
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102. doi: 10.1093/nar/gkx247 PMID: 28407145
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled proteinprotein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368. doi: 10.1093/nar/gkw937 PMID: 27924014
- Liu, Y; Grimm, M; Dai, WT; Hou, MC Cao, Y CB-Dock: A web server for cavity detection-guided proteinligand blind docking. Acta Pharmacologica Sinica, 2019, 41(Suppl 14)
- Chua, G.T.; Rosa Duque, J.S.; Cheuk, D.K.L.; Leung, A.W.K.; Wong, W.H.S.; Liu, A.P.Y.; Lee, P.P.W.; Ha, S.Y.; Chiang, A.K.S.; Ho, M.H.K.; Chu, W.K.; Chan, Y.S.; Luk, C.W.; Ling, A.S.C.; Kwan, M.Y.W.; Yiu, O.K.F.; Wong, I.C.K.; Lau, Y.L.; Li, C.K.; Leung, W.H.; Chan, G.C.F.; Ip, P.; Kwok, J. HLA alleles associated with asparaginase hypersensitivity in Chinese children. J. Hematol. Oncol., 2021, 14(1), 182. doi: 10.1186/s13045-021-01201-3 PMID: 34717720
- Zhi-Min, W.; Qi-Fan, Z.; Ying-Wei, X.; Da, P. Apoptosis of human gastric cancer cells induced by bulbus allii macrostemi volatile oil. Zhongguo Linchuang Kangfu, 2006, 10(19), 115-117.
- Luo, T.; Shi, M.Q.; Liu, X. Effect of total saponin from allium macrostemon bunge on proliferation and apoptosis of cervix cancer HeLa cells. Chinese J. Diff. Compl. Cases., 2012, 11(10), 762-765.
- Wang, Y.; Tang, Q.; Jiang, S.; Li, M.; Wang, X. Anti-colorectal cancer activity of macrostemonoside A mediated by reactive oxygen species. Biochem. Biophys. Res. Commun., 2013, 441(4), 825-830. doi: 10.1016/j.bbrc.2013.10.148 PMID: 24211203
- Chen, H.; Wang, G.; Wang, N.; Yang, M.; Wang, Z.; Wang, X.; Yao, X. New furostanol saponins from the bulbs of Allium macrostemon Bunge and their cytotoxic activity. Pharmazie, 2007, 62(7), 544-548. PMID: 17718198
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front. Pharmacol., 2019, 10, 123. doi: 10.3389/fphar.2019.00123 PMID: 30846939
- Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Lu, H.Z.; Xu, X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One, 2013, 8(4), e62839. doi: 10.1371/journal.pone.0062839 PMID: 23638153
- Hernandez Borrero, L.; Dicker, D.T.; Santiago, J.; Sanders, J.; Tian, X.; Ahsan, N.; Lev, A.; Zhou, L.; El-Deiry, W.S. A subset of CB002 xanthine analogs bypass p53-signaling to restore a p53 transcriptome and target an S-phase cell cycle checkpoint in tumors with mutated-p53. eLife, 2021, 10, e70429. doi: 10.7554/eLife.70429 PMID: 34324416
- Tenbaum, S.P. Ordóñez-Morán, P.; Puig, I.; Chicote, I.; Arqués, O.; Landolfi, S.; Fernández, Y.; Herance, J.R.; Gispert, J.D.; Mendizabal, L.; Aguilar, S.; Cajal, S.R.; Schwartz, S., Jr; Vivancos, A.; Espín, E.; Rojas, S.; Baselga, J.; Tabernero, J.; Muñoz, A.; Palmer, H.G. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat. Med., 2012, 18(6), 892-901. doi: 10.1038/nm.2772 PMID: 22610277
- Wang, Y.; Hou, H.; Liang, Z.; Chen, X.; Lian, X.; Yang, J.; Zhu, Z.; Luo, H.; Su, H.; Gong, Q. P38 MAPK/AKT signalling is involved in IL-33-mediated anti-apoptosis in childhood acute lymphoblastic leukaemia blast cells. Ann. Med., 2021, 53(1), 1464-1472. doi: 10.1080/07853890.2021.1970217 PMID: 34435521
- Koh, Y.W.; Han, J.H.; Yoon, D.H.; Suh, C.; Huh, J. Epstein-Barr virus positivity is associated with angiogenesis in, and poorer survival of, patients receiving standard treatment for classical Hodgkins lymphoma. Hematol. Oncol., 2018, 36(1), 182-188. doi: 10.1002/hon.2468 PMID: 28744882
- Mawson, A.R.; Majumdar, S. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitts lymphoma. Int. J. Cancer, 2017, 141(9), 1849-1855. doi: 10.1002/ijc.30885 PMID: 28707393
- Forlani, G.; Shallak, M.; Tedeschi, A.; Cavallari, I.; Marçais, A.; Hermine, O.; Accolla, R.S. Dual cytoplasmic and nuclear localization of HTLV-1-encoded HBZ protein is a unique feature of adult T-cell leukemia. Haematologica, 2021, 106(8), 2076-2085. doi: 10.3324/haematol.2020.272468 PMID: 33626865
- Mitobe, Y.; Yasunaga, J.; Furuta, R.; Matsuoka, M. HTLV-1 bZIP factor RNA and protein impart distinct functions on T-cell proliferation and survival. Cancer Res., 2015, 75(19), 4143-4152. doi: 10.1158/0008-5472.CAN-15-0942 PMID: 26383166
- Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270. doi: 10.3390/molecules22081270 PMID: 28758919
- Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177. doi: 10.3390/ijms20133177 PMID: 31261749
- Li, H.; Chen, F.J.; Yang, W.L.; Qiao, H.Z.; Zhang, S.J. Quercetin improves cognitive disorder in aging mice by inhibiting NLRP3 inflammasome activation. Food Funct., 2021, 12(2), 717-725. doi: 10.1039/D0FO01900C PMID: 33338087
- Vargas, A.J.; Burd, R. Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management. Nutr. Rev., 2010, 68(7), 418-428. doi: 10.1111/j.1753-4887.2010.00301.x PMID: 20591109
- Bin Sayeed, M.S.; Ameen, S.S. Beta-Sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutr. Cancer, 2015, 67(8), 1216-1222. doi: 10.1080/01635581.2015.1087042 PMID: 26473555
- Park, C.; Moon, D.O.; Rhu, C.H.; Choi, B.T.; Lee, W.H.; Kim, G.Y.; Choi, Y.H. Beta-sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol. Pharm. Bull., 2007, 30(7), 1317-1323. doi: 10.1248/bpb.30.1317 PMID: 17603173
- Awad, A.B. Chinnam, M.; Fink, C.S.; Bradford, P.G. β-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine, 2007, 14(11), 747-754. doi: 10.1016/j.phymed.2007.01.003 PMID: 17350814
- Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res., 2018, 135, 122-126. doi: 10.1016/j.phrs.2018.08.002 PMID: 30081177
- Chen, Y.Y.; Chang, Y.M.; Wang, K.Y.; Chen, P.N.; Hseu, Y.C.; Chen, K.M.; Yeh, K.T.; Chen, C.J.; Hsu, L.S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environ. Toxicol., 2019, 34(3), 233-239. doi: 10.1002/tox.22677 PMID: 30431227
- Park, S.; Lim, W.; Bazer, F.W.; Song, G. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated P38 and JNK MAPK pathways. Phytomedicine, 2018, 50, 238-246. doi: 10.1016/j.phymed.2017.08.026 PMID: 30466984
- Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J. Cell. Biochem., 2017, 118(5), 1118-1131. doi: 10.1002/jcb.25729 PMID: 27606834
- Curylova, L.; Ramos, H.; Saraiva, L.; Skoda, J. Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett., 2022, 525, 131-145. doi: 10.1016/j.canlet.2021.10.037 PMID: 34742870
- Chen, J.; Ge, X.; Zhang, W.; Ding, P.; Du, Y.; Wang, Q.; Li, L.; Fang, L.; Sun, Y.; Zhang, P.; Zhou, Y.; Zhang, L.; Lv, X.; Li, L.; Zhang, X.; Zhang, Q.; Xue, K.; Gu, H.; Lei, Q.; Wong, J.; Hu, W. PI3K/AKT inhibition reverses R-CHOP resistance by destabilizing SOX2 in diffuse large B cell lymphoma. Theranostics, 2020, 10(7), 3151-3163. doi: 10.7150/thno.41362 PMID: 32194860
- Vera-Lozada, G.; Segges, P.; Stefanoff, C.G.; Barros, M.H.M.; Niedobitek, G.; Hassan, R. Pathway-focused gene expression profiles and immunohistochemistry detection identify contrasting association of caspase 3 (CASP3) expression with prognosis in pediatric classical Hodgkin lymphoma. Hematol. Oncol., 2018, 36(4), 663-670. doi: 10.1002/hon.2523 PMID: 29901224
- Mohanty, A.; Sandoval, N.; Phan, A.; Nguyen, T.V.; Chen, R.W.; Budde, E.; Mei, M.; Popplewell, L.; Pham, L.V.; Kwak, L.W.; Weisenburger, D.D.; Rosen, S.T.; Chan, W.C.; Müschen, M.; Ngo, V.N. Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma. Blood, 2019, 133(4), 306-318. doi: 10.1182/blood-2018-05-851667 PMID: 30530749
- Si, J.; Shi, X.; Sun, S.; Zou, B.; Li, Y.; An, D.; Lin, X.; Gao, Y.; Long, F.; Pang, B.; Liu, X.; Liu, T.; Chi, W.; Chen, L.; Dimitrov, D.S.; Sun, Y.; Du, X.; Yin, W.; Gao, G.; Min, J.; Wei, L.; Liao, X. Hematopoietic progenitor kinase 1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell, 2020, 38(4), 551-566.e11. doi: 10.1016/j.ccell.2020.08.001 PMID: 32860752
- Lu, F.; Zhao, Y.; Pang, Y.; Ji, M.; Sun, Y.; Wang, H.; Zou, J.; Wang, Y.; Li, G.; Sun, T.; Li, J.; Ma, D.; Ye, J.; Ji, C. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett., 2021, 497, 178-189. doi: 10.1016/j.canlet.2020.10.024 PMID: 33091534
- Lin, Y.; Hui, W.; Winter, B.; Chang-Cheng, S.; Hong-Qiang, Q. Yu, C Pharmacokinetics and pharmacogenetics of high-dose methotrexate in Chinese adult patients with non-Hodgkin lymphoma: A population analysis. Cancer chemotherapy and pharmacology, 2020, 85(5), 881-897.
- Yang, L.; Wu, H.; Gelder, T.; Matic, M.; Ruan, J.S.; Han, Y.; Xie, R.X. SLCO1B1 rs4149056 genetic polymorphism predicting methotrexate toxicity in Chinese patients with non-Hodgkin lymphoma. Pharmacogenomics, 2017, 18(17), 1557-1562. doi: 10.2217/pgs-2017-0110 PMID: 29095107
Supplementary files
