Application of Cell Penetrating Peptides for Intracellular Delivery of Endostatin: A Computational Approach
- Authors: Zamani M.1, Nezafat N.2, Mokarram P.3, Kadkhodaei B.4
-
Affiliations:
- Autophagy Research Center, Shiraz University of Medical Sciences
- Pharmaceutical Sciences Research Cente, Shiraz University of Medical Sciences
- Department of Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences
- Department of Radiation Oncology,, Shiraz University of Medical Sciences
- Issue: Vol 20, No 3 (2024)
- Pages: 208-223
- Section: Chemistry
- URL: https://rjeid.com/1573-4099/article/view/643961
- DOI: https://doi.org/10.2174/1573409919666230426093230
- ID: 643961
Cite item
Full Text
Abstract
Background:Endostatin is an antiangiogenic compound with anticancer activity. The poor stability and low half-life of endostatin are the main barriers to the clinical use of this protein. Cell-penetrating peptides (CPPs) are extensively applied as carrier in the delivery of drugs and different therapeutic agents. Therefore, they can be proper candidates to improve endostatin delivery to the target cells.
Objective:In this study, we aim to computationally predict appropriate CPPs for the delivery of endostatin.
Methods:Potential appropriate CPPs for protein delivery were selected based on the literature. The main parameters for detection of best CPP-endostatin fusions, including stability, hydrophobicity, antigenicity, and subcellular localization, were predicted using ProtParam, VaxiJen, and DeepLoc-1.0 servers, respectively. The 3D structures of the best CPP-Endostatin fusions were modeled by the I-TASSER server. The predicted models were validated using PROCHECK, ERRAT, Verify3D and ProSA-Web servers. The best models were visualized by the PyMol molecular graphics system.
Results:Considering the principal parameters in the selection of best CPPs for endostatin delivery, endostatin fusions with four CPPs, including Cyt c-ss-MAP, TP-biot1, MPGα, and DPV1047, high stability and hydrophobicity, no antigenicity and extracellular localization were predicted as the best potential fusions for endostatin delivery. Four CPPs, including Cyt c-ss-MAP, TP-biot1, MPGα, and DPV1047, were predicted as the best potential candidates to improve endostatin delivery.
Conclusion:Application of these CPPs may overcome the limitation of endostatin therapeutic applications, including poor stability and low half-life. Subsequent experimental studies will contribute to verifying these computational results.
About the authors
Mozhdeh Zamani
Autophagy Research Center, Shiraz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Navid Nezafat
Pharmaceutical Sciences Research Cente, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Pooneh Mokarram
Department of Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences
Email: info@benthamscience.net
Behnam Kadkhodaei
Department of Radiation Oncology,, Shiraz University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Habault, J.; Poyet, J.L. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules, 2019, 24(5), 927. doi: 10.3390/molecules24050927 PMID: 30866424
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med., 2019, 9(1), 84. doi: 10.3390/jcm9010084 PMID: 31905724
- Wu, T.; Duan, X.; Hu, T.; Mu, X.; Jiang, G.; Cui, S. Effect of endostatin on Wnt pathway of stem-like cells in bladder cancer in tumor microenvironment. Mol. Biol. Rep., 2020, 47(5), 3937-3948. doi: 10.1007/s11033-020-05487-3 PMID: 32388699
- Hua, L.; Ping, L.; Hong-Yan, G. Recent advances on the modified endostatin and ocular neovascularization. Int. J. Ophthalmol., 2009, 2(4), 642-644.
- Mohajeri, A.; Sanaei, S.; Kiafar, F.; Fattahi, A.; Khalili, M.; Zarghami, N. The challenges of recombinant endostatin in clinical application: Focus on the different expression systems and molecular bioengineering. Adv. Pharm. Bull., 2017, 7(1), 21-34. doi: 10.15171/apb.2017.004 PMID: 28507934
- Poluzzi, C.; Iozzo, R.V.; Schaefer, L. Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv. Drug Deliv. Rev., 2016, 97, 156-173. doi: 10.1016/j.addr.2015.10.012 PMID: 26518982
- Ramakrishnan, S.; Bui Nguyen, T.M.; Subramanian, I.V.; Kelekar, A. Autophagy and angiogenesis inhibition. Autophagy, 2007, 3(5), 511-514. doi: 10.4161/auto.4734 PMID: 17643071
- Nguyen, T.M.B.; Subramanian, I.V.; Xiao, X.; Ghosh, G.; Nguyen, P.; Kelekar, A.; Ramakrishnan, S. Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and β-catenin levels. J. Cell. Mol. Med., 2009, 13(9b), 3687-3698. doi: 10.1111/j.1582-4934.2009.00722.x PMID: 19298526
- Li, K.; Shi, M.; Qin, S. Current status and study progress of recombinant human endostatin in cancer treatment. Oncol. Ther., 2018, 6(1), 21-43. doi: 10.1007/s40487-017-0055-1 PMID: 32700135
- Ren, Z.; Wang, Y.; Jiang, W.; Dai, W.; Jiang, Y. Anti-tumor effect of a novel soluble recombinant human endostatin: administered as a single agent or in combination with chemotherapy agents in mouse tumor models. PLoS One, 2014, 9(9), e107823. doi: 10.1371/journal.pone.0107823 PMID: 25229620
- Wang, Z.Q.; Wang, D.S.; Wang, F.H.; Ren, C.; Tan, Q.; Li, Y.H. Recombinant human endostatin plus paclitaxel/nedaplatin for recurrent or metastatic advanced esophageal squamous cell carcinoma: A prospective, single-arm, open-label, phase II study. Invest. New Drugs, 2021, 39(2), 516-523. doi: 10.1007/s10637-020-01021-1 PMID: 33070249
- Chen, L.; Shi, H.; Che, Y.; Sun, W.; Niu, X.; Lu, W. Verification of protein structures: Patterns of nonbonded atomic interactions transcatheter arterial infusion and chemoembolization on gastric cancer with liver metastasis and analysis of prognosis. J. BUON, 2020, 25, 1469-1475. PMID: 32862592
- Hai-Tao, Z.; Hui-Cheng, L.; Zheng-Wu, L.; Chang-Hong, G. A tumor-penetrating peptide modification enhances the antitumor activity of endostatin in vivo. Anticancer Drugs, 2011, 22(5), 409-415. doi: 10.1097/CAD.0b013e328342050d PMID: 21427563
- Lee, T.Y.; Tjin Tham Sjin, R.M.; Movahedi, S.; Ahmed, B.; Pravda, E.A.; Lo, K.M.; Gillies, S.D.; Folkman, J.; Javaherian, K. Linking antibody Fc domain to endostatin significantly improves endostatin half-life and efficacy. Clin. Cancer Res., 2008, 14(5), 1487-1493. doi: 10.1158/1078-0432.CCR-07-1530 PMID: 18316573
- Guo, L.; Xu, B.; Zhou, D.; Chang, G.; Fu, Y.; Liu, L.; Luo, Y. Biophysical and biological characterization of PEGylated recombinant human endostatin. Clin. Exp. Pharmacol. Physiol., 2019, 46(10), 920-927. doi: 10.1111/1440-1681.13134 PMID: 31278773
- Tan, H.; Yang, S.; Feng, Y.; Liu, C.; Cao, J.; Mu, G.; Wang, F. Characterization and secondary structure analysis of endostatin covalently modified by polyethylene glycol and low molecular weight heparin. J. Biochem., 2008, 144(2), 207-213. doi: 10.1093/jb/mvn060 PMID: 18463113
- Jing, Y.; Lu, H.; Wu, K.; Subramanian, I.V.; Ramakrishnan, S. Inhibition of ovarian cancer by RGD-P125A-endostatin-Fc fusion proteins. Int. J. Cancer, 2011, 129(3), 751-761. doi: 10.1002/ijc.25932 PMID: 21225621
- Idiiatullina, E.; Al-Azab, M.; Walana, W.; Pavlov, V.; Liu, B. EnDuo, a novel derivative of Endostar, inhibits the migration of colon cancer cells, suppresses matrix metalloproteinase-2/9 expression and impedes AKT/ERK activation. Biomed. Pharmacother., 2021, 134, 111136. doi: 10.1016/j.biopha.2020.111136 PMID: 33341042
- Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, Ü. Cell-penetrating peptides. Trends Pharmacol. Sci., 2000, 21(3), 99-103. doi: 10.1016/S0165-6147(00)01447-4 PMID: 10689363
- Milletti, F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today, 2012, 17(15-16), 850-860. doi: 10.1016/j.drudis.2012.03.002 PMID: 22465171
- Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450. doi: 10.1016/S0021-9258(17)34080-2 PMID: 8144628
- Kardani, K.; Bolhassani, A. CPPsite 2.0: An available database of experimentally validated cell-penetrating peptides predicting their secondary and tertiary structures. J. Mol. Biol., 2021, 433(11), 166703. doi: 10.1016/j.jmb.2020.11.002 PMID: 33186582
- Zarei, M.; Rahbar, M.R.; Negahdaripour, M.; Morowvat, M.H.; Nezafat, N.; Ghasemi, Y. Cell penetrating peptide: Sequence-based computational prediction for intercellular delivery of arginine deiminase. Curr. Proteomics, 2020, 17(2), 117-131. doi: 10.2174/1570164616666190701120351
- Pundir, S.; Martin, M.J.; ODonovan, C. UniProt Protein Knowledgebase. In: Protein bioinformatics. Methods in molecular biology; Wu, C.; Arighi, C.; Ross, K., Eds.; Humana Press: New York, NY, 2017; pp. 41-55. doi: 10.1007/978-1-4939-6783-4_2
- Gautam, A.; Chaudhary, K.; Kumar, R.; Raghava, G.P.S. Computer-aided virtual screening and designing of cell-penetrating peptides. Methods Mol. Biol., 2015, 1324, 59-69. doi: 10.1007/978-1-4939-2806-4_4
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In: The proteomics protocols handbook The proteomics protocols handbook; Springer Protocols Handbooks, 2005; pp. 571-607. doi: 10.1385/1-59259-890-0:571
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8(1), 4. doi: 10.1186/1471-2105-8-4 PMID: 17207271
- Almagro Armenteros, J.J.; Sønderby, C.K.; Sønderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics, 2017, 33(21), 3387-3395. doi: 10.1093/bioinformatics/btx431 PMID: 29036616
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8. doi: 10.1038/nmeth.3213 PMID: 25549265
- Laskowski, R.; MacArthur, M.; Thornton, J. PROCHECK: Validation of Protein-Structure Coordinates. In: Crystallography of biological macromolecules; , 2006. doi: 10.1107/97809553602060000882
- Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519. doi: 10.1002/pro.5560020916 PMID: 8401235
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356(6364), 83-85. doi: 10.1038/356083a0 PMID: 1538787
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(S2), W407-W410. doi: 10.1093/nar/gkm290 PMID: 17517781
- Li, Y.; Rosal, R.V.; Brandt-Rauf, P.W.; Fine, R.L. Correlation between hydrophobic properties and efficiency of carrier-mediated membrane transduction and apoptosis of a p53 C-terminal peptide. Biochem. Biophys. Res. Commun., 2002, 298(3), 439-449. doi: 10.1016/S0006-291X(02)02470-1 PMID: 12413961
- Nam, S.H.; Park, J.; Koo, H. Recent advances in selective and targeted drug/gene delivery systems using cell-penetrating peptides. Arch. Pharm. Res., 2023, 46(1), 18-34. doi: 10.1007/s12272-022-01425-y PMID: 36593377
- Yokoyama, Y.; Ramakrishnan, S. Improved biological activity of a mutant endostatin containing a single amino-acid substitution. Br. J. Cancer, 2004, 90(8), 1627-1635. doi: 10.1038/sj.bjc.6601745 PMID: 15083196
- Xu, X.; Mao, W.; Chen, Q.; Zhuang, Q.; Wang, L.; Dai, J.; Wang, H.; Huang, Z. Endostar, a modified recombinant human endostatin, suppresses angiogenesis through inhibition of Wnt/β-catenin signaling pathway. PLoS One, 2014, 9(9), e107463. doi: 10.1371/journal.pone.0107463 PMID: 25232946
- Hansen, M.; Kilk, K.; Langel, Ü. Predicting cell-penetrating peptides. Adv. Drug Deliv. Rev., 2008, 60(4-5), 572-579. doi: 10.1016/j.addr.2007.09.003 PMID: 18045726
Supplementary files
