Antibacterial microcins, class II: A review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In medicine, the issue of the use of effective antibacterial substances against drug-resistant microorganisms remains relevant. Most publications on microcins show undoubted prospects for the further development of these pharmacological agents of bacterial origin with multidirectional action (antibacterial, antiviral, antitumor, etc.). One of the features of microcins is their specific inhibitory activity against gram-negative microorganisms (Escherichia, Proteus, Salmonella, Pseudomonas, etc.). This review aimed to briefly summarize current information about one of the groups of microcins (class II) to assess their possible use in practical medicine and scientific research. The review uses sources from the Russian Science Citation Index, Web of Science, Scopus, and PubMed databases.

Full Text

Restricted Access

About the authors

Larisa P. Blinkova

Mechnikov Research Institute for Vaccines and Sera

Email: b.larus@mail.ru
ORCID iD: 0000-0003-0271-5934
SPIN-code: 9793-6601

Dr. Sci. (Biol.), Professor

Russian Federation, Moscow

Mike L. Altshuler

Mechnikov Research Institute for Vaccines and Sera

Email: maltshuler8@gmail.com
ORCID iD: 0000-0003-3775-5792

Cand. Sci. (Biol.)

Russian Federation, Moscow

Andrey Yu. Mironov

Gabrichevsky Research Institute for epidemiology and microbiology of Rospotrebnadzor; Federal scientific and clinical center for specialized types of medical care and medical technologies

Author for correspondence.
Email: andy.60@mail.ru
ORCID iD: 0000-0002-8544-5230
SPIN-code: 9225-1560

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow; Moscow

References

  1. Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination [Internet]. F1000Research. 2017;6:195. doi: 10.12688/f1000research.10609.1 [cited 2023 Apr 20]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=Escherichia+coli+ST131%3A+a+multidrug-resistant+clone+primed+for+global+domination. pii: F1000 Faculty Rev-195. doi: 10.12688/f1000research.10609.1
  2. Manges AR, Geum HM, Guo A, et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 2019;32(3):e00135-18 doi: 10.1128/CMR.00135-18
  3. World Health Organization [Internet]. Lack of new antibiotics threatens global efforts to contain drug-resistant infections. World Health Organization News Release. 2020 [cited 2023 Apr 20]. Available from: https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections.
  4. Arnison PG, Bibb MJ, Bierbaum G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30(1):108–60. doi: 10.1039/c2np20085f
  5. Tan S, Moore G, Nodwell J. Put a bow on it: knotted antibiotics take center stage. Antibiotics (Basel). 2019;8(3):117. doi: 10.3390/antibiotics8030117
  6. Collin F, Maxwell A. The microbial toxin microcin B17: Prospects for the development of new antibacterial agents. J Mol Biol. 2019; 431(18):3400–3426. doi: 10.1016/j.jmb.2019.05.050
  7. Vassiliadis G, Destoumieux-Garzón G, Lombard C, Rebuffat S, Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, Microcins M and H47. Antimicrobial agents and chemotherapy. 2010;54(1):288–297. doi: 10.1128/AAC.00744-09
  8. Martin P, Tronnet S, Garcie C, Oswald E. Interplay between siderophores and colibactin genotoxin in Escherichia coli. IUBMB Life. 2017;69(6). doi: 10.1002/iub.1612
  9. Thomas X, Destoumieux-Garzón D, Peduzzi J, et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem. 2004;279(27):28233–28242. doi: 10.1074/jbc.M400228200
  10. Bister B, Bischoff D, Nicholson GJ, et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. BioMetals. 2004;17:471–481. doi: 10.1023/B:BIOM.0000029432.69418.6a
  11. Rebuffat S. Microcins. In: Kastin A., editor. Handbook of biologically active peptides. 2nd ed. Amsterdam: Elsevier/AP; 2013. P. 129–137.
  12. Rebuffat S. Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans. 2012;40(6);1456–1462. doi: 10.1042/BST20120183
  13. Marcoleta AE, Gutiérrez-Cortez S, Hurtado F, et al. The Ferric uptake regulator (Fur) and iron availability control the production and maturation of the antibacterial peptide microcin E492. PLoS ONE. 2018;13(8):e0200835 doi: 10.1371/journal.pone.0200835
  14. Sablé S, Duarte M, Bravo D, et al. Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity. Canadian J Microbiol. 2003;49(5):357–361. doi: 10.1139/w03-047
  15. Massip C, Branchu P, Bossuet-Greif N, et al. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathogens. 2019;15(9):e1008029. doi: 10.1371/journal.ppat.1008029
  16. Poey ME, Azpiroz MF, Laviña M. Comparative analysis of chromosome-encoded microcins. Antimicrobial agents and chemotherapy. 2006. Vol. 50, N 4. P. 1411–1418. doi: 10.1128/AAC.50.4.1411-1418.2006
  17. Zschüttig A, Zimmermann K, Blom J, et al. Identification and Characterization of Microcin S, a New Antibacterial Peptide Produced by Probiotic Escherichia coli G3/10. PLoS One. 2012;7(3):e33351. doi: 10.1371/journal.pone.0033351
  18. Lu SY, Graça T, Avillan JJ, Zhao Z, Call DR. Microcin PDI inhibits antibiotic-resistant strains of Escherichia coli and Shigella through a mechanism of membrane disruption and protection by homotrimer self-immunity. Appl Environ Microbiol. 2019;85(11):e00371-19. doi: 10.1128/AEM.00371-19
  19. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports. 2007;24(4):708–734. doi: 10.1039/b516237h
  20. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiology Spectrum. 2016;4(1). doi: 10.1128/microbiolspec.VMBF-0012-2015
  21. Smith TJ, Sondermann H, O’Toole GA. Type 1 does the two-step: type 1 secretion substrates with a functional periplasmic intermediate. J Bacteriol. 2018;200(18):e00168-18. doi: 10.1128/JB.00168-18
  22. Rodríguez E, Laviña M. The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin H47 antibiotic action. Antimicrob Agents Chemother. 2003;47(1):181–187. doi: 10.1128/AAC.47.1.181-187.2003
  23. Yang CC, Konisky J. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol.1984;158(2)757–759. doi: 10.1128/jb.158.2.757-759.1984
  24. Berger EA. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Nat Acad Sci USA. 1973;70(5):1514–1518. doi: 10.1073/pnas.70.5.1514
  25. Cairney J, Higgins CF, Booth IR. Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions. J Bacteriol. 1984;160(1):22–27. doi: 10.1128/jb.160.1.22-27.1984
  26. Deutscher J, Aké FM, Derkaoui M, et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev. 2014;78(2):231–256. doi: 10.1128/MMBR.00001-14
  27. Destoumieux-Garzón D, Thomas X, Santamaria M, et al. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol microbiol. 2003;49(4):1031–1041. doi: 10.1046/j.1365-2958.2003.03610.x
  28. Morin N, Lanneluc I, Connil N, et al. Mechanism of nactericidal activity of microcin L in Escherichia coli and Salmonella enterica. Antimicrob agents and chemother. 2011;55(3):997–1007. doi: 10.1128/AAC.01217-10
  29. Nicholls DG, Ferguson SJ. Cellular Bioenergetics, раздел 9.6.1. Ionophores and cells. In: Nicholls DG, Ferguson SJ. Bioenergetics. 4th ed. Elsevier; 2013.
  30. Palmer JD, Mortzfeld BM, Piattelli E, et al. A class IIb microcin with potent activity against multidrug resistant Enterobacteriaceae. ACS Infect Dis. 2020;6(4):672–679. doi: 10.1021/acsinfecdis.9b00302
  31. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17(10):12276–12286. doi: 10.3390/molecules171012276
  32. Negash KH, Norris JKS, Hodgkinson JT. Siderophore — antibiotic conjugate design: new drugs for bad bugs? Molecules. 2019;24(18):3314. doi: 10.3390/molecules24183314
  33. Azpiroz MF, Laviña M. Modular structure of microcin H47 and colicin V. Antimicrob Agents Chemother. 2007;51(7):2412–2419. doi: 10.1128/AAC.01606-06
  34. Reis A. Challenges in chemical and recombinant peptide production processes [Internet]. ProteoBlog by Proteogenix [cited 2023 Apr 20]. Available from: https://www.proteogenix.science/scientific-corner/peptide-synthesis/challenges-in-chemical-and-recombinant-peptide-production-processes/.
  35. Gomez-Escribano JP, Castro JF, Razmilic V, et al. Heterologous expression of a cryptic gene cluster from Streptomyces leeuwenhoekii C34T yields a novel lasso peptide, leepeptin. Appl Environ Microbiol. 2019;85(23):e01752–19. doi: 10.1128/AEM.01752-19
  36. Tietz JI, Schwalen CJ, Patel PS, et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol. 2017;13:470–478. doi: 10.1038/nchembio.2319
  37. Cameron A, Zaheer R, Adator EH, et al. Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater. Toxins (Basel). 2019;11(8):475. doi: 10.3390/toxins11080475
  38. Palmer JD, Piattelli E, McCormick BA, et al. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect Dis. 2018;4(1):39–45. doi: 10.1021/acsinfecdis.7b00114
  39. Baquero F, Lanza VF, Baquero MR, et al. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front Microbiol. 2019;10:2261. doi: 10.3389/fmicb.2019.02261
  40. de Lorenzo V. Isolation and characterization of microcin E 492 from Klebsiella pneumoniae. Arch Microbiol. 1984;139:72–75.
  41. Pons A-M, Delalande F, Duarte M, et al. Genetic analysis and complete primary structure of microcin L. Antimicrob Agents Chemother. 2004;48(2):505–513. doi: 10.1128/AAC.48.2.505-513.2004
  42. Laviña M, Gaggero C, Moreno F. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol. 1990; 172(11):6585–6588. doi: 10.1128/jb.172.11.6585-6588.1990.
  43. Park MS, Kim JI, Lee I, et al. Towards the Application of Human Defensins as Antivirals. Biomol Ther (Seoul). 2018;26(3):242–254. doi: 10.4062/biomolther.2017.172/
  44. Hetz C, Bono MR, Barros LF, Lagos R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA. 2002;99(5): 2696–2701. doi: 10.1073/pnas.052709699
  45. Varas MA, Muñoz-Montecinos C, Kallens V, et al. Exploiting zebrafish xenografts for testing the in vivo antitumorigenic activity of microcin E492 against human colorectal cancer cells. Front Microbiol. 2020;11:405. doi: 10.3389/fmicb.2020.00405
  46. Shahnawaz M, Park K-W, Mukherjee A, Diaz-Espinoza R, Soto C. Prion-like characteristics of the bacterial protein microcin E492. Sci Rep. 2017;7(1):45720. doi: 10.1038/srep45720
  47. Aguilera P, Marcoleta A, Lobos-Ruiz P. et al. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation. Front Microbiol. 2016;7:35. doi: 10.3389/fmicb.2016.00035

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Classification of microcins in accordance with modern ideas about peptides of ribosomal origin with antimicrobial activity [4]. РП — ribosomal peptides.

Download (430KB)
3. Fig. 2. Topological variant of the amino acid chain of the peptide, called the “lasso configuration”.

Download (391KB)

Copyright (c) 2023 Eco-vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 014448 от 08.02.1996
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80652 от 15.03.2021
.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies