Layered composite material of niobium–ceramic

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Layered composite materials based on niobium and cermet were produced via self-propagating high-temperature synthesis of pre-structured samples using metal foils (Ti, Nb, Ta, Ni) and reaction tapes (Ti + 1.7B) and (5Ti + 3Si). Reaction tapes for synthesis were produced by rolling process of powder mixtures. The microstructure, elemental and phase compositions of the synthesized multilayer composite materials were studied by scanning electron microscopy and X-ray phase analysis. Particular attention was paid to the formation of intermediate layers and surface modification occurring during combustion. The strength characteristics of synthesized materials were determined according to the three-point loading scheme at temperatures of 1100°C. The analysis of obtained materials showed that joining in the combustion mode of metal foils and reaction tapes is provided due to reaction diffusion, mutual impregnation and chemical reactions occurring in the reaction tapes and on the surface of metal foils. The formation of thin intermediate layers in the form of cermet and eutectic solutions provides the synthesized multilayer materials with good strength properties up to 87 MPa at 1100°C. These results are of interest for the development of structural materials operating under extreme conditions.

Texto integral

Acesso é fechado

Sobre autores

O. Kamynina

Osipyan Institute of Solid State Physics RAS

Autor responsável pela correspondência
Email: kamynolya@gmail.com
Rússia, 142432, Chernogolovka

S. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Email: kamynolya@gmail.com
Rússia, 142432, Chernogolovka

I. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Email: kamynolya@gmail.com
Rússia, 142432, Chernogolovka

D. Prokhorov

Osipyan Institute of Solid State Physics RAS

Email: kamynolya@gmail.com
Rússia, 142432, Chernogolovka

D. Andreev

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Email: kamynolya@gmail.com
Rússia, 142432, Chernogolovka

A. Nekrasov

Institute of Experimental Mineralogy RAS

Email: kamynolya@gmail.com
Rússia, 142432, Chernogolovka

Bibliografia

  1. Zhao J.C., Westbrook J.H. // MRS Bull. 2003. V. 28. P. 622. https://doi.org/10.1557/mrs2003.189
  2. Kong B., Jia L., Zhang H., Sha J., Shi S., Guan K. // Int. J. Refractory Metals Hard Mater. 2016. V. 58. P. 84. https://doi.org/10.1016/j.ijrmhm.2016.04.004
  3. Pierre C., Tasadduq Kh. // Aerospace Sci. Technol. 1999. V. 3. № 8. P. 513. https://doi.org/10.1016/S1270-9638(99)00108-X
  4. Kiiko V.M., Korzhov V.P., Kurlov V.N., Khvostunkov K.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 6. P. 1126. https://www.doi.org/10.1134/S1027451020060075
  5. Tsakiropoulos P. // Prog. Mater. Sci. 2022. V. 123. P. 100714. https://www.doi.org/10.1016/j.pmatsci.2020.100714
  6. Deardo A.J. // Int. Mater. Rev. 2003. V. 48. № 6. P. 371. https://doi.org/10.1179/095066003225008833
  7. Zheng X., Bai R., Cai X., Bai R., Xia M.,Wang F., Liu H., Wang H. // Mater. China. 2014. V. 33. № 9. P. 586. https://www.doi.org/10.7502/j.issn.1674-3962.2014.09.07
  8. Le V.T., Ha N.S., Goo N.S. // Composites B. 2021. V. 226. P. 109301. https://doi.org/10.1016/j.compositesb.2021.109301
  9. Saurabh A., Meghana Ch.M., Singh P.K., Verma P.Ch. // Materials Today: Proc. 2022. V. 56. P. 412. https://doi.org/10.1016/j.matpr.2022.01.268
  10. Wang J.C., Liu Y.J., Qin P, Liang S.X., Sercombe T.B., Zhang L.C. // Mater. Sci. Engineering A. 2019. V. 760. P. 214. https://doi.org/10.1016/j.msea.2019.06.001
  11. Gramberg U., Renner M., Diekmann H. // Mater. Corrosion. 1995. V. 46. № 12. P. 689. https://doi.org/10.1002/maco.19950461206
  12. Li Sh., Xiao L., Liu S., Zhang Y., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  13. Cai X., Wang D., Wang Y., Yang Zh. // J. Manufacturing Processes. 2021. V. 64. P. 1349. https://doi.org/10.1016/j.jmapro.2021.02.057
  14. Wunderlich W. // Metals. 2014. V. 4. P. 410. https://www.doi.org/10.3390/met4030410
  15. Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. // Int. J. Self-Propag. High-Temp. Synth. 2016. V. 25. P. 238. https://doi.org/10.3103/S106138621604004X
  16. Kamynina O.K., Vadchenko S.G., Shchukin A.S. // Russ. J. Non-Ferr. Met. 2019. V. 60. P. 422. https://doi.org/10.3103/S1067821219040035
  17. Ye Y., Mu D. // // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018
  18. Pei X.-J., Huang J.-H., Zhang J.-G., Wei Sh., Lin G.-B., Liu H.-Y. // Mater. Lett. 2006. V. 60. P. 2240. https://www.doi.org/10.1016/j.matlet.2005.12.138
  19. Reyes D., Malard V., Drawin S., Couret A., Moncho- ux J.-P. // Intermetallics. 2022. V. 144. P. 107509. https://www.doi.org/10.1016/j.intermet.2022.107509
  20. Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 177. https://doi.org/10.1134/S0010508219020060
  21. Marchenko E., Yasenchuk Yu., Baigonakova G., Gun-ther S., Yuzhakov M., Zenkin S., Potekaev A., Dubovi-kov K. // Surf. Coat. Technol. 2020. V. 388. P. 125543. https://doi.org/10.1016/j.surfcoat.2020.125543
  22. Vorotilo S., Potanin A.Y., Iatsyuk I.V., Levashov E.A. // Adv. Eng. Mater. 2018. V. 20. P. 1800200. https://doi.org/10.1002/adem.201800200
  23. Kamynina O.K., Vadchenko S.G., Shkodich N.F., Kovalev I.D. // Metals. 2022. V. 12. № 1. P. 38. https://doi.org/10.3390/met12010038
  24. Vadchenko S.G., Suvorov D.S., Kamynina O.K., Mukhina N.I. // Combust. Explos. Shock Waves. 2021. V. 57. № 6. P. 672. https://doi.org/10.1134/S0010508221060058
  25. Liu R., Hou X.S., Yang S.Y., Chen C., Mao Y.R., Wang S., Zhong Z.H., Zhang Z., Lu P., Wu Y.C. // Materials Characterization. 2021. V. 172. P. 110875. https://doi.org/10.1016/j.matchar.2021.110875
  26. Dohmen R., Marschall H.R., Ludwig Th., Polednia J. // Phys. Chem. Minerals. 2019. V. 46. P. 311. https://doi.org/10.1007/s00269-018-1005-7
  27. Li Sh., Xiao L., Liu S., Zhang Ya., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. № 12. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  28. Ansel D., Thibon I., Boliveau M., Debuigne J. // Acta Materialia. 1998. V. 46. № 2. P. 423. https://doi.org/10.1016/S1359-6454(97)00272-3
  29. Liu Y., Li K., Wu H., Song M., Wang W., Li N., Tang H. // J. Mechanical Behavior Biomed. Mater. 2015. V. 51. P. 302. https://doi.org/10.1016/j.jmbbm.2015.07.004
  30. Krishan R., Garg S.P., Krishnamurthy N., Paul E. // Phase Diagrams of Binary Tantalum Alloys. Indian Institute of Metals, Calcutta, India, 1996. P. 118.
  31. Zhang Y., Zhou J.P., Sun D.Q., Li H.M. // J. Mater. Res. Technol. 2020. V. 9. № 2. P. 1780. https://doi.org/10.1016/j.jmrt.2019.12.009
  32. Tang B., Tan Y., Xu T., Sun Z., Li X. // Coatings. 2020. V. 10. № 9. P. 813. https://doi.org/10.3390/coatings10090813
  33. Ioannis P., Claire U., Panos 0T. // Sci Technol Adv Mater. 2017. V. 18. № 1. P. 467. https://www.doi.org/10.1080/14686996.2017.1341802
  34. Yang Y., Mu D. // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Initial sample structured from refractory metal foils and reaction tapes.

Baixar (122KB)
3. Fig. 2. Distribution map of elements of the synthesized sample.

Baixar (262KB)
4. Fig. 3. Diffraction pattern of the synthesized sample.

Baixar (117KB)
5. Fig. 4. Morphology of the sample region corresponding to layers L1–L9 (Table 2).

Baixar (288KB)
6. Fig. 5. Morphology of the sample region corresponding to layers L9–L17 (Table 2).

Baixar (352KB)
7. Fig. 6. Fracture diagram at 1100°C (a) and morphology of the sample after three-point bending tests (b).

Baixar (137KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024