Layered composite material of niobium–ceramic

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Layered composite materials based on niobium and cermet were produced via self-propagating high-temperature synthesis of pre-structured samples using metal foils (Ti, Nb, Ta, Ni) and reaction tapes (Ti + 1.7B) and (5Ti + 3Si). Reaction tapes for synthesis were produced by rolling process of powder mixtures. The microstructure, elemental and phase compositions of the synthesized multilayer composite materials were studied by scanning electron microscopy and X-ray phase analysis. Particular attention was paid to the formation of intermediate layers and surface modification occurring during combustion. The strength characteristics of synthesized materials were determined according to the three-point loading scheme at temperatures of 1100°C. The analysis of obtained materials showed that joining in the combustion mode of metal foils and reaction tapes is provided due to reaction diffusion, mutual impregnation and chemical reactions occurring in the reaction tapes and on the surface of metal foils. The formation of thin intermediate layers in the form of cermet and eutectic solutions provides the synthesized multilayer materials with good strength properties up to 87 MPa at 1100°C. These results are of interest for the development of structural materials operating under extreme conditions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Kamynina

Osipyan Institute of Solid State Physics RAS

Хат алмасуға жауапты Автор.
Email: kamynolya@gmail.com
Ресей, 142432, Chernogolovka

S. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Email: kamynolya@gmail.com
Ресей, 142432, Chernogolovka

I. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Email: kamynolya@gmail.com
Ресей, 142432, Chernogolovka

D. Prokhorov

Osipyan Institute of Solid State Physics RAS

Email: kamynolya@gmail.com
Ресей, 142432, Chernogolovka

D. Andreev

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Email: kamynolya@gmail.com
Ресей, 142432, Chernogolovka

A. Nekrasov

Institute of Experimental Mineralogy RAS

Email: kamynolya@gmail.com
Ресей, 142432, Chernogolovka

Әдебиет тізімі

  1. Zhao J.C., Westbrook J.H. // MRS Bull. 2003. V. 28. P. 622. https://doi.org/10.1557/mrs2003.189
  2. Kong B., Jia L., Zhang H., Sha J., Shi S., Guan K. // Int. J. Refractory Metals Hard Mater. 2016. V. 58. P. 84. https://doi.org/10.1016/j.ijrmhm.2016.04.004
  3. Pierre C., Tasadduq Kh. // Aerospace Sci. Technol. 1999. V. 3. № 8. P. 513. https://doi.org/10.1016/S1270-9638(99)00108-X
  4. Kiiko V.M., Korzhov V.P., Kurlov V.N., Khvostunkov K.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 6. P. 1126. https://www.doi.org/10.1134/S1027451020060075
  5. Tsakiropoulos P. // Prog. Mater. Sci. 2022. V. 123. P. 100714. https://www.doi.org/10.1016/j.pmatsci.2020.100714
  6. Deardo A.J. // Int. Mater. Rev. 2003. V. 48. № 6. P. 371. https://doi.org/10.1179/095066003225008833
  7. Zheng X., Bai R., Cai X., Bai R., Xia M.,Wang F., Liu H., Wang H. // Mater. China. 2014. V. 33. № 9. P. 586. https://www.doi.org/10.7502/j.issn.1674-3962.2014.09.07
  8. Le V.T., Ha N.S., Goo N.S. // Composites B. 2021. V. 226. P. 109301. https://doi.org/10.1016/j.compositesb.2021.109301
  9. Saurabh A., Meghana Ch.M., Singh P.K., Verma P.Ch. // Materials Today: Proc. 2022. V. 56. P. 412. https://doi.org/10.1016/j.matpr.2022.01.268
  10. Wang J.C., Liu Y.J., Qin P, Liang S.X., Sercombe T.B., Zhang L.C. // Mater. Sci. Engineering A. 2019. V. 760. P. 214. https://doi.org/10.1016/j.msea.2019.06.001
  11. Gramberg U., Renner M., Diekmann H. // Mater. Corrosion. 1995. V. 46. № 12. P. 689. https://doi.org/10.1002/maco.19950461206
  12. Li Sh., Xiao L., Liu S., Zhang Y., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  13. Cai X., Wang D., Wang Y., Yang Zh. // J. Manufacturing Processes. 2021. V. 64. P. 1349. https://doi.org/10.1016/j.jmapro.2021.02.057
  14. Wunderlich W. // Metals. 2014. V. 4. P. 410. https://www.doi.org/10.3390/met4030410
  15. Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. // Int. J. Self-Propag. High-Temp. Synth. 2016. V. 25. P. 238. https://doi.org/10.3103/S106138621604004X
  16. Kamynina O.K., Vadchenko S.G., Shchukin A.S. // Russ. J. Non-Ferr. Met. 2019. V. 60. P. 422. https://doi.org/10.3103/S1067821219040035
  17. Ye Y., Mu D. // // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018
  18. Pei X.-J., Huang J.-H., Zhang J.-G., Wei Sh., Lin G.-B., Liu H.-Y. // Mater. Lett. 2006. V. 60. P. 2240. https://www.doi.org/10.1016/j.matlet.2005.12.138
  19. Reyes D., Malard V., Drawin S., Couret A., Moncho- ux J.-P. // Intermetallics. 2022. V. 144. P. 107509. https://www.doi.org/10.1016/j.intermet.2022.107509
  20. Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 177. https://doi.org/10.1134/S0010508219020060
  21. Marchenko E., Yasenchuk Yu., Baigonakova G., Gun-ther S., Yuzhakov M., Zenkin S., Potekaev A., Dubovi-kov K. // Surf. Coat. Technol. 2020. V. 388. P. 125543. https://doi.org/10.1016/j.surfcoat.2020.125543
  22. Vorotilo S., Potanin A.Y., Iatsyuk I.V., Levashov E.A. // Adv. Eng. Mater. 2018. V. 20. P. 1800200. https://doi.org/10.1002/adem.201800200
  23. Kamynina O.K., Vadchenko S.G., Shkodich N.F., Kovalev I.D. // Metals. 2022. V. 12. № 1. P. 38. https://doi.org/10.3390/met12010038
  24. Vadchenko S.G., Suvorov D.S., Kamynina O.K., Mukhina N.I. // Combust. Explos. Shock Waves. 2021. V. 57. № 6. P. 672. https://doi.org/10.1134/S0010508221060058
  25. Liu R., Hou X.S., Yang S.Y., Chen C., Mao Y.R., Wang S., Zhong Z.H., Zhang Z., Lu P., Wu Y.C. // Materials Characterization. 2021. V. 172. P. 110875. https://doi.org/10.1016/j.matchar.2021.110875
  26. Dohmen R., Marschall H.R., Ludwig Th., Polednia J. // Phys. Chem. Minerals. 2019. V. 46. P. 311. https://doi.org/10.1007/s00269-018-1005-7
  27. Li Sh., Xiao L., Liu S., Zhang Ya., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. № 12. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  28. Ansel D., Thibon I., Boliveau M., Debuigne J. // Acta Materialia. 1998. V. 46. № 2. P. 423. https://doi.org/10.1016/S1359-6454(97)00272-3
  29. Liu Y., Li K., Wu H., Song M., Wang W., Li N., Tang H. // J. Mechanical Behavior Biomed. Mater. 2015. V. 51. P. 302. https://doi.org/10.1016/j.jmbbm.2015.07.004
  30. Krishan R., Garg S.P., Krishnamurthy N., Paul E. // Phase Diagrams of Binary Tantalum Alloys. Indian Institute of Metals, Calcutta, India, 1996. P. 118.
  31. Zhang Y., Zhou J.P., Sun D.Q., Li H.M. // J. Mater. Res. Technol. 2020. V. 9. № 2. P. 1780. https://doi.org/10.1016/j.jmrt.2019.12.009
  32. Tang B., Tan Y., Xu T., Sun Z., Li X. // Coatings. 2020. V. 10. № 9. P. 813. https://doi.org/10.3390/coatings10090813
  33. Ioannis P., Claire U., Panos 0T. // Sci Technol Adv Mater. 2017. V. 18. № 1. P. 467. https://www.doi.org/10.1080/14686996.2017.1341802
  34. Yang Y., Mu D. // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Initial sample structured from refractory metal foils and reaction tapes.

Жүктеу (122KB)
3. Fig. 2. Distribution map of elements of the synthesized sample.

Жүктеу (262KB)
4. Fig. 3. Diffraction pattern of the synthesized sample.

Жүктеу (117KB)
5. Fig. 4. Morphology of the sample region corresponding to layers L1–L9 (Table 2).

Жүктеу (288KB)
6. Fig. 5. Morphology of the sample region corresponding to layers L9–L17 (Table 2).

Жүктеу (352KB)
7. Fig. 6. Fracture diagram at 1100°C (a) and morphology of the sample after three-point bending tests (b).

Жүктеу (137KB)

© Russian Academy of Sciences, 2024