Vol 31, No 14 (2024)
- Year: 2024
- Articles: 9
- URL: https://rjeid.com/0929-8673/issue/view/10010
Anti-Infectives and Infectious Diseases
Unlocking the Benefits of Fasting: A Review of its Impact on Various Biological Systems and Human Health
Abstract
Fasting has gained significant attention in recent years for its potential health benefits in various body systems. This review aims to comprehensively examine the effects of fasting on human health, specifically focusing on its impact on different bodys physiological systems. The cardiovascular system plays a vital role in maintaining overall health, and fasting has shown promising effects in improving cardiovascular health markers such as blood pressure, cholesterol levels, and triglyceride levels. Additionally, fasting has been suggested to enhance insulin sensitivity, promote weight loss, and improve metabolic health, thus offering potential benefits to individuals with diabetes and metabolic disorders. Furthermore, fasting can boost immune function, reduce inflammation, enhance autophagy, and support the body's defense against infections, cancer, and autoimmune diseases. Fasting has also demonstrated a positive effect on the brain and nervous system. It has been associated with neuroprotective properties, improving cognitive function, and reducing the risk of neurodegenerative diseases, besides the ability of increasing the lifespan. Hence, understanding the potential advantages of fasting can provide valuable insights for individuals and healthcare professionals alike in promoting health and wellbeing. The data presented here may have significant implications for the development of therapeutic approaches and interventions using fasting as a potential preventive and therapeutic strategy.



Coenzyme Q10 for Enhancing Physical Activity and Extending the Human Life Cycle
Abstract
Background:Coenzyme Q (CoQ) is an enzyme family that plays a crucial role in maintaining the electron transport chain and antioxidant defense. CoQ10 is the most common form of CoQ in humans. A deficiency of CoQ10 occurs naturally with aging and may contribute to the development or progression of many diseases. Besides, certain drugs, in particular, statins and bisphosphonates, interfere with the enzymes responsible for CoQ10 biosynthesis and, thus, lead to CoQ10 deficiency.
Objectives:This article aims to evaluate the cumulative studies and insights on the topic of CoQ10 functions in human health, focusing on a potential role in maintaining physical activity and extending the life cycle.
Results:Although supplementation with CoQ10 offers many benefits to patients with cardiovascular disease, it appears to add little value to patients suffering from statin-associated muscular symptoms. This may be attributed to substantial heterogeneity in doses and treatment regimens used.
Conclusion:Therefore, there is a need for further studies involving a greater number of patients to clarify the benefits of adjuvant therapy with CoQ10 in a range of health conditions and diseases.



Drugs to Treat Neuroinflammation in Neurodegenerative Disorders
Abstract
Neuroinflammation is associated with disorders of the nervous system, and it is induced in response to many factors, including pathogen infection, brain injury, toxic substances, and autoimmune diseases. Astrocytes and microglia have critical roles in neuroinflammation. Microglia are innate immune cells in the central nervous system (CNS), which are activated in reaction to neuroinflammation-inducing factors. Astrocytes can have pro- or anti-inflammatory responses, which depend on the type of stimuli presented by the inflamed milieu. Microglia respond and propagate peripheral inflammatory signals within the CNS that cause low-grade inflammation in the brain. The resulting alteration in neuronal activities leads to physiological and behavioral impairment. Consequently, activation, synthesis, and discharge of various pro-inflammatory cytokines and growth factors occur. These events lead to many neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis discussed in this study. After understanding neuroinflammation mechanisms and the involvement of neurotransmitters, this study covers various drugs used to treat and manage these neurodegenerative illnesses. The study can be helpful in discovering new drug molecules for treating neurodegenerative disorders.



MicroRNA-mediated Regulation of LDL Receptor: Biological and Pharmacological Implications
Abstract
One of the main causes of atherosclerosis is a disruption in cellular cholesterol hemostasis. The low-density lipoprotein receptor (LDLR) is an important factor in maintaining cholesterol homeostasis by the receptor-mediated endocytosis of LDL particles. Defective hepatic LDLR activity and uptake of LDL particles lead to elevated blood levels of low-density lipoprotein cholesterol (LDL-C), which is associated with a higher risk of atherosclerotic cardiovascular disease. LDLR expression can be affected by microRNAs (miRNAs). Some miRNAs, like miR-148a, miR-185, miR-224, miR-520, miR-128-1, miR-27a/b, miR-130b, and miR-301 seem to be important post-transcriptional regulators of LDLR related genes. These findings indicate the critical role of miRNAs in regulating LDL metabolism. The aim of this review was to provide insight into the miRNAs involved in LDLR activity and their potential roles in the treatment of cardiovascular disease.



Chemical Strategies towards the Development of Effective Anticancer Peptides
Abstract
Cancer is increasingly recognized as one of the primary causes of death and has become a multifaceted global health issue. Modern medical science has made significant advancements in the diagnosis and therapy of cancer over the past decade. The detrimental side effects, lack of efficacy, and multidrug resistance of conventional cancer therapies have created an urgent need for novel anticancer therapeutics or treatments with low cytotoxicity and drug resistance. The pharmaceutical groups have recognized the crucial role that peptide therapeutic agents can play in addressing unsatisfied healthcare demands and how these become great supplements or even preferable alternatives to biological therapies and small molecules. Anticancer peptides, as a vibrant therapeutic strategy against various cancer cells, have demonstrated incredible anticancer potential due to high specificity and selectivity, low toxicity, and the ability to target the surface of traditional "undruggable" proteins. This review will provide the research progression of anticancer peptides, mainly focusing on the discovery and modifications along with the optimization and application of these peptides in clinical practice.



The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy
Abstract
Background:Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance.
Methods:Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents.
Results:This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy.
Conclusion:The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.



Triazolopyrimidine Derivatives: An Updated Review on Recent Advances in Synthesis, Biological Activities and Drug Delivery Aspects
Abstract
Molecules containing triazolopyrimidine core showed diverse biological activities, including anti-Alzheimer's, anti-diabetes, anti-cancer, anti-microbial, anti-tuberculosis, anti-viral, anti-malarial, anti-inflammatory, anti-parkinsonism, and anti-glaucoma activities. Triazolopyrimidines have 8 isomeric structures, including the most stable 1,2,4-triazolo[1,5- a] pyrimidine ones. Triazolopyrimidines were obtained by using various chemical reactions, including a) 1,2,4-triazole nucleus annulation to pyrimidine, b) pyrimidines annulation to 1,2,4-triazole structure, c) 1,2,4-triazolo[l,5-a] pyrimidines rearrangement, and d) pyrimidotetrazine rearrangement. This review discusses synthetic methods, recent pharmacological actions and drug delivery perspectives of triazolopyrimidines.



Impact of Statin or Fibrate Therapy on Homocysteine Concentrations: A Systematic Review and Meta-analysis
Abstract
Introduction:Statins and fibrates are two lipid-lowering drugs used in patients with dyslipidemia. This systematic review and meta-analysis were conducted to determine the magnitude of the effect of statin and fibrate therapy on serum homocysteine levels.
Methods:A search was undertaken of the PubMed, Scopus, Web of Science, Embase, and Google Scholar electronic databases up to 15 July 2022. Primary endpoints focused on plasma homocysteine levels. Data were quantitatively analyzed using fixed or random- effect models, as appropriate. Subgroup analyses were conducted based on the drugs and hydrophilic-lipophilic balance of statins.
Results:After screening 1134 papers, 52 studies with a total of 20651 participants were included in the meta-analysis. The analysis showed a significant decrease in plasma homocysteine levels after statin therapy (WMD: -1.388 µmol/L, 95% CI: [-2.184, -0.592], p = 0.001; I2 = 95%). However, fibrate therapy significantly increased plasma homocysteine levels (WMD: 3.459 µmol/L, 95% CI: [2.849, 4.069], p < 0.001; I2 = 98%). The effect of atorvastatin and simvastatin depended on the dose and duration of treatment (atorvastatin [coefficient: 0.075 [0.0132, 0.137]; p = 0.017, coefficient: 0.103 [0.004, 0.202]; p = 0.040, respectively] and simvastatin [coefficient: -0.047 [-0.063, -0.031]; p < 0.001, coefficient: 0.046 [0.016, 0.078]; p = 0.004]), whereas the effect of fenofibrate persisted over time (coefficient: 0.007 [-0.011, 0.026]; p = 0.442) and was not altered by a change in dosage (coefficient: -0.004 [-0.031, 0.024]; p = 0.798). In addition, the greater homocysteine- lowering effect of statins was associated with higher baseline plasma homocysteine concentrations (coefficient: -0.224 [-0.340, -0.109]; p < 0.001).
Conclusion:Fibrates significantly increased homocysteine levels, whereas statins significantly decreased them.



High-sensitivity Troponin (hs-Tn) for Cardiovascular Risk Prognostication: A Systematic Review and Meta-analysis
Abstract
Background:Chronic low-grade inflammation is involved in coronary atherosclerosis progression whereas recent research efforts suggest that preventative methods should be tailored to the "residual inflammatory risk". As such, modalities for the early identification of the risk have to be investigated.
Methods:We performed a systematic review and meta-analysis according to the PRISMA guidelines. Any study that presented the prognostic value of high sensitivity troponin (hs-cTn) of vascular inflammation in stable patients without known cardiac heart disease was considered to be potentially eligible. The Medline (PubMed) database was searched up to April 22, 2021. The main endpoint was the difference in c-index (Δ[c-index]) with the use of hs-cTn for major adverse cardiovascular events (MACEs), cardiovascular and all-cause mortality. We calculated I2 to test heterogeneity.
Results:In total, 44 studies and 112,288 stable patients without known coronary heart disease were included in this meta-analysis. The mean follow-up duration of the whole cohort was 6.8 ± 1.1 years. 77,004 (68.5%) of the patients presented at low cardiovascular risk while 35,284 (31.5%) in high. The overall pooled estimate of Δ[c-index] for MACE was 1.4% (95%CI: 0.7-2.1, I2=0%) and for cardiovascular death 1.3% (95%CI: 0.3-2.3, I2=0%). Finally, the overall pooled estimate of Δ[c-index] for all-cause mortality was 3% (95%CI: 1.9-3.9, I2=86%), while high heterogeneity was observed between the studies.
Conclusion:The predictive usefulness of changes in hs-cTn measures in stable individuals with either high or low cardiovascular risk, demonstrates that assessing vascular inflammation in addition to clinical risk factors enhances risk prediction for cardiovascular events and allcause mortality. Further prospective studies are necessary to confirm these findings and assist clinical decision-making regarding the most optimal prevention strategy.


