ON PIECEWISE CUBIC ESTIMATES OF THE VALUE FUNCTION IN THE PROBLEM OF TARGET CONTROL FOR A NONLINEAR SYSTEM
- Autores: Tochilin P.A.1,2, Chistyakov I.A.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
- Shenzhen MSU-BIT University
 
- Edição: Volume 60, Nº 5 (2024)
- Páginas: 672-685
- Seção: CONTROL THEORY
- URL: https://rjeid.com/0374-0641/article/view/649526
- DOI: https://doi.org/10.31857/S0374064124050083
- EDN: https://elibrary.ru/LBIBKJ
- ID: 649526
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A nonlinear system of ordinary differential equations with control parameters is considered. Pointwise restrictions are imposed on the possible values of these parameters. It is required to solve the problem of transferring the trajectory of the system from an arbitrary initial position to the smallest possible neighborhood of a given target set at a fixed time interval by selecting the appropriate feedback control. To solve this problem, it is proposed to construct a continuous piecewise cubic function of a special kind. The level sets of this function correspond to internal estimates of the solvability sets of the system. Using this function, it is also possible to construct a feedback control function that solves the target control problem at a fixed time interval. The paper proposes formulas for calculating the values of a piecewise cubic function, examines its properties, and considers an algorithm for searching for parameters defining this function.
			                Palavras-chave
Sobre autores
P. Tochilin
Lomonosov Moscow State University; Shenzhen MSU-BIT University
														Email: tochilin@cs.msu.ru
				                					                																			                												                								Russia; China						
I. Chistyakov
Lomonosov Moscow State University
														Email: chistyakov.ivan@yahoo.com
				                					                																			                												                								Russia						
Bibliografia
- Kurzhanski, A.B. Dynamics and Control of Trajectory Tubes / A.B. Kurzhanski, P. Varaiya. — Basel : Birkh¨auser, 2014. — 445 p.
- Куржанский, А.Б. Принцип сравнения для уравнений типа Гамильтона–Якоби в теории управления / А.Б. Куржанский // Тр. Ин-та математики и механики УрО РАН. — 2006. — Т. 12, № 1. — С. 173–183.
- Точилин, П.А. О построении кусочно-аффинной функции цены в задаче оптимального управления на бесконечном отрезке времени / П.А. Точилин // Тр. Ин-та математики и механики УрО РАН. — 2020. — Т. 26, № 1. — С. 223–238.
- Точилин, П.А. О построении разрывного кусочно-аффинного синтеза управлений в задаче целевого управления / П.А. Точилин, И.А. Чистяков // Тр. Ин-та математики и механики УрО РАН. — 2021. — Т. 27, № 3. — С. 194–210.
- Чистяков, И.А. Применение кусочно-квадратичных функций цены для приближённого решения нелинейной задачи целевого управления / И.А. Чистяков, П.А. Точилин // Дифференц. уравнения. — 2020. — Т. 56, № 11. — С. 1545–1554.
- Чистяков, И.А. Построение разрывных кусочно-квадратичных функций цены в задаче целевого управления / И.А. Чистяков, П.А. Точилин // Тр. Ин-та математики и механики УрО РАН. — 2022. — Т. 28, № 3. — С. 259–273.
- Половинкин, Е.С. Многозначный анализ и дифференциальные включения / Е.С. Половинкин. — М. : Физматлит, 2015. — 524 c.
- Interior-point methods for large-scale cone programming / M.S. Andersen, J. Dahl, Z. Liu, L. Vandenberghe // Optimization for Machine Learning / Eds. S. Sra, S. Nowozin, S.J. Wright. — Cambridge ; London : The MIT Press, 2011. — P. 55–83.
- OSQP: an operator splitting solver for quadratic programs / B. Stellato, G. Banjac, P. Goulart [et al.] // Math. Prog. Comp. — 2020. — V. 12. — P. 637–672.
- Скворцов, А.В., Мирза Н.С. Алгоритмы построения и анализа триангуляции / А.В. Скворцов, Н.С. Мирза. — Томск : Изд-во Томск. ун-та, 2006. — 168 с.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
