О КУСОЧНО-КУБИЧЕСКИХ ОЦЕНКАХ ФУНКЦИИ ЦЕНЫ В ЗАДАЧЕ ЦЕЛЕВОГО УПРАВЛЕНИЯ НЕЛИНЕЙНОЙ СИСТЕМОЙ
- Авторы: Точилин П.А.1,2, Чистяков И.А.1
- 
							Учреждения: 
							- Московский государственный университет имени М.В. Ломоносова
- Университет МГУ-ППИ в Шэньчжэне
 
- Выпуск: Том 60, № 5 (2024)
- Страницы: 672-685
- Раздел: ТЕОРИЯ УПРАВЛЕНИЯ
- URL: https://rjeid.com/0374-0641/article/view/649526
- DOI: https://doi.org/10.31857/S0374064124050083
- EDN: https://elibrary.ru/LBIBKJ
- ID: 649526
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассмотрена нелинейная по фазовым переменным система обыкновенных дифференциальных уравнений с управляющими параметрами, на возможные значения которых наложены поточечные ограничения. Необходимо решить задачу о переводе траектории системы из произвольной начальной позиции в наименьшую возможную окрестность заданного целевого множества на фиксированном отрезке времени за счёт выбора соответствующего позиционного управления. Для её решения построена непрерывная кусочно-кубическая функция специального вида. Множества уровней этой функции задают внутренние оценки для множеств разрешимости исследуемой системы. Используя указанную функцию, можно также построить синтез управлений, решающий задачу целевого управления на конечном отрезке времени. Предложены формулы для расчёта значений кусочно-кубической функции, исследованы её свойства, рассмотрен алгоритм поиска задающих эту функцию параметров.
			                Об авторах
П. А. Точилин
Московский государственный университет имени М.В. Ломоносова; Университет МГУ-ППИ в Шэньчжэне
														Email: tochilin@cs.msu.ru
				                					                																			                												                								Китай						
И. А. Чистяков
Московский государственный университет имени М.В. Ломоносова
														Email: chistyakov.ivan@yahoo.com
				                					                																			                												                								Russia						
Список литературы
- Kurzhanski, A.B. Dynamics and Control of Trajectory Tubes / A.B. Kurzhanski, P. Varaiya. — Basel : Birkh¨auser, 2014. — 445 p.
- Куржанский, А.Б. Принцип сравнения для уравнений типа Гамильтона–Якоби в теории управления / А.Б. Куржанский // Тр. Ин-та математики и механики УрО РАН. — 2006. — Т. 12, № 1. — С. 173–183.
- Точилин, П.А. О построении кусочно-аффинной функции цены в задаче оптимального управления на бесконечном отрезке времени / П.А. Точилин // Тр. Ин-та математики и механики УрО РАН. — 2020. — Т. 26, № 1. — С. 223–238.
- Точилин, П.А. О построении разрывного кусочно-аффинного синтеза управлений в задаче целевого управления / П.А. Точилин, И.А. Чистяков // Тр. Ин-та математики и механики УрО РАН. — 2021. — Т. 27, № 3. — С. 194–210.
- Чистяков, И.А. Применение кусочно-квадратичных функций цены для приближённого решения нелинейной задачи целевого управления / И.А. Чистяков, П.А. Точилин // Дифференц. уравнения. — 2020. — Т. 56, № 11. — С. 1545–1554.
- Чистяков, И.А. Построение разрывных кусочно-квадратичных функций цены в задаче целевого управления / И.А. Чистяков, П.А. Точилин // Тр. Ин-та математики и механики УрО РАН. — 2022. — Т. 28, № 3. — С. 259–273.
- Половинкин, Е.С. Многозначный анализ и дифференциальные включения / Е.С. Половинкин. — М. : Физматлит, 2015. — 524 c.
- Interior-point methods for large-scale cone programming / M.S. Andersen, J. Dahl, Z. Liu, L. Vandenberghe // Optimization for Machine Learning / Eds. S. Sra, S. Nowozin, S.J. Wright. — Cambridge ; London : The MIT Press, 2011. — P. 55–83.
- OSQP: an operator splitting solver for quadratic programs / B. Stellato, G. Banjac, P. Goulart [et al.] // Math. Prog. Comp. — 2020. — V. 12. — P. 637–672.
- Скворцов, А.В., Мирза Н.С. Алгоритмы построения и анализа триангуляции / А.В. Скворцов, Н.С. Мирза. — Томск : Изд-во Томск. ун-та, 2006. — 168 с.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

