(Strept)avidin Binds Glycoconjugates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Fluorescently labeled and conjugated (strept)avidin is widely used for imaging of biotinylated molecules in immunological assays and histochemistry. The presented article shows that in addition to biotin, these proteins bind a number of glycans, including fragments of glycoprotein and glycolipid chains of mammals, in particular, antigens of the ABO blood system, oligolactosamines, 6-O-sulfated oligosaccharides. This interaction is inhibited in a dose-dependent manner by glycans in a form of polymeric (but not monomeric) conjugates at the micromolar concentration level, i.e. requires polyvalence. Taking into account the cluster organization of cell glycans (glycoproteins and glycolipids), when analyzing objects containing carbohydrates, this property is a potential source of error, that can be prevented by avoiding a large excess of (strept)avidin in the analytical system.

全文:

受限制的访问

作者简介

N. Shilova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology

编辑信件的主要联系方式.
Email: pumatnv@gmail.com
俄罗斯联邦, 117997, Moscow; 117997, Moscow

S. Polyakova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
俄罗斯联邦, 117997, Moscow

A. Nokel

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Academician Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology

Email: pumatnv@gmail.com
俄罗斯联邦, 117997, Moscow; 117997, Moscow

A. Lipatnikov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
俄罗斯联邦, 117997, Moscow

E. Gordeeva

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
俄罗斯联邦, 117997, Moscow

M. Lavrentyeva

MIREA – Russian Technological University

Email: pumatnv@gmail.com
俄罗斯联邦, 119571, Moscow

N. Bovin

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: pumatnv@gmail.com
俄罗斯联邦, 117997, Moscow

参考

  1. Green, M. N. (1990) Avidin and streptavidin, Methods Enzymol., 184, 51-67, https://doi.org/10.1016/0076-6879(90)84259-J.
  2. Bing, T., Chang, T., Qi, C., Zhang, N., Liu, X., and Shangguan, D. (2012) Specific interactions between adenosine and streptavidin/avidin, Bioorg. Med. Chem. Lett., 22, 7052-7055, https://doi.org/10.1016/j.bmcl.2012.09.088.
  3. Caparon, M. H., De Ciechi, P. A., Devine, C. S., Olins, P. O., and Lee, S. C. (1996) Analysis of novel streptavidin-binding peptides, identified using a phage display library, shows that amino acids external to a perfectly conserved consensus sequence and to the presented peptides contribute to binding, Mol. Divers., 1, 241-246, https://doi.org/10.1007/BF01715528.
  4. Houen, G., and Hansen, K. (1997) Interference of sugars with the binding of biotin to streptavidin and avidin, J. Immunol. Methods, 210, 115-123, https://doi.org/10.1016/S0022-1759(97)00166-X.
  5. Smith, J. A., Xu, G., Feng, R., Janetka, J. W., and Moeller, K. D. (2016) C‐glycosides, array‐based addressable libraries, and the versatility of constant current electrochemistry, Electroanalysis, 28, 2808-2817, https://doi.org/10.1002/elan.201600200.
  6. Ennen, F., Boye, S., Lederer, A., Cernescu, M., Komber, H., Brutschy, B., Voit, B., and Appelhans, D. (2014) Biohybrid structures consisting of biotinylated glycodendrimers and proteins: influence of the biotin ligand’s number and chemical nature on the biotin–avidin conjugation, Polym. Chem., 5, 1323-1339, https://doi.org/10.1039/C3PY01152F.
  7. Beber, A., Alqabandi, M., Prévost, C., Viars, F., Lévy, D., Bassereau, P., Bertin, A., and Mangenot, S. (2019) Septin‐based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles, Cytoskeleton, 76, 92-103, https://doi.org/10.1002/cm.21480.
  8. Obukhova, P., Tsygankova, S., Chinarev, A., Shilova, N., Nokel, A., Kosma, P., and Bovin, N. (2020) Are there specific antibodies against Neu5Gc epitopes in the blood of healthy individuals? Glycobiology, 30, 395-406, https://doi.org/10.1093/glycob/cwz107.
  9. Ahmad, N., Gabius, H.-J., Kaltner, H., André, S., Kuwabara, I., Liu, F.-T., Oscarson, S., Norberg, T., and Brewer, C. F. (2002) Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3, and -7: evidence for differential binding specificities, Canad. J. Chem., 80, 1096-1104, https://doi.org/10.1139/v02-162.
  10. Shilova, N., Bovin, N., Maltseva, D., Polyakova, S., Sablina, M., Niwa, H., Zakharova, G., Raygorodskaya, M., Bufeeva, L., Belyi, Y., Hushpulian, D., and Tonevitsky, A. (2022) Specificity of viscumin revised. As probed with a printed glycan array, Biochimie, 202, 94-102, https://doi.org/10.1016/j.biochi.2022.08.009.
  11. Tuzikov, A., Chinarev, A., Shilova, N., Gordeeva, E., Galanina, O., Ovchinnikova, T., Schaefer, M., and Bovin, N. (2021) 40 years of glyco-polyacrylamide in glycobiology, Glycoconj. J., 38, 89-100, https://doi.org/10.1007/s10719-020-09965-5.
  12. Obukhova, P., Rieben, R., and Bovin, N. (2007) Normal human serum contains high levels of anti-Galα1-4GlcNAc antibodies, Xenotransplantation, 14, 627-635, https://doi.org/10.1111/j.1399-3089.2007.00436.x.
  13. Duhamel, R. C., and Whitehead, J. S. (1990) Prevention of nonspecific binding of avidin, 201-207, https://doi.org/ 10.1016/0076-6879(90)84275-L.
  14. Nyhlin, N., El-Salhy, M., Sandström, O., and Suhr, O. (1997) Evaluation of immunohistochemical staining of human duodenal endocrine cells after microwave antigen retrieval, Histochem. J., 29, 177-181, https://doi.org/ 10.1023/a:1026441623791.
  15. Kim, S. H., Jung, K. C., Shin, Y. K., Lee, K. M., Park, Y. S., Choi, Y. L., Oh, K. I., Kim, M. K., Chung, D. H., Son, H. G., and Park, S. H. (2002) The enhanced reactivity of endogenous biotin-like molecules by antigen retrieval procedures and signal amplification with tyramine, Histochem. J., 34, 97-103, https://doi.org/10.1023/a:1020954611464.
  16. Shone, C., Ferreira, J., Boyer, A., Cirino, N., Egan, C., Evans, E., Kools, J., and Sharma, S. (2006) The 5th international conference on basic and therapeutic aspects of Botulinum and tetanus neurotoxins. Workshop review: assays and detection, Neurotox. Res., 9, 205-216, https://doi.org/10.1007/BF03033940.
  17. Dundas, C. M., Demonte, D., and Park, S. (2013) Streptavidin–biotin technology: improvements and innovations in chemical and biological applications, Appl. Microbiol. Biotechnol., 97, 9343-9353, https://doi.org/10.1007/s00253-013-5232-z.
  18. Jain, A., and Cheng, K. (2017) The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis, J. Controll. Rel., 245, 27-40, https://doi.org/10.1016/j.jconrel.2016.11.016.

补充文件

附件文件
动作
1. JATS XML
2. Supplementary 1
下载 (16KB)
3. Supplementary 2
下载 (36KB)
4. Fig. 1. Glycans that showed the best interaction with Alexa 555-labelled streptavidin (at a concentration of 1 µg/ml). The glycan errey consisted of 174 glycans immobilised as polyacrylamide conjugates, Glyc-RAA [11]. The maximum possible fluorescence (OEF) value in this analytical system is about 65,000; signals from ligand-free spots, i.e. background, do not exceed 100 OEF. All monosaccharides except rhamnose are D-pyranoses. Trivial names of oligosaccharides are given in parentheses. See Appendix 1 for more details

下载 (173KB)
5. Fig. 2. Interaction of PC-labelled streptavidin (at a concentration of 0.1 µg/ml) with Glyc-PAA conjugates: a - concentration dependence of the interaction with glycoconjugates immobilised in the wells of a 96-well plate; b - dose-dependent inhibition of the interaction of labelled streptavidin with immobilised GlcNAcα-RAA by GlcNAcα-RAA and GlcNAcβ-RAA, and unconjugated GlcNAcα-sp and GlcNAcβ-sp (sp - spacer). OD - optical density

下载 (213KB)
6. Fig. 3. Decreasing the concentration of streptavidin when visualising the binding of RCA120 to its ligands did not affect the overall signal intensity or the interaction profile. The Pearson correlation coefficient is 0.92. See Appendix 2 for more details

下载 (79KB)

版权所有 © Russian Academy of Sciences, 2024