Characterization of Structural Properties and Antimicrobial Activity of Complement System C3f Peptide
- Authors: Krenev I.A.1, Egorova E.V.1,2, Khaydukova M.M.1,3, Mikushina A.D.1,4, Zabrodskaya Y.A.1,5,6, Komlev A.S.1, Eliseev I.E.1,4, Shamova O.V.1,2, Berlov M.N.1,2
-
Affiliations:
- Institute of Experimental Medicine
- Saint Petersburg State University
- Research Institute of Hygiene, Occupational Pathology and Human Ecology
- Alferov University
- Smorodintsev Research Institute of Influenza
- Peter the Great Saint Petersburg Polytechnic University
- Issue: Vol 89, No 11 (2024)
- Pages: 2002-2016
- Section: Regular articles
- URL: https://rjeid.com/0320-9725/article/view/681431
- DOI: https://doi.org/10.31857/S0320972524110186
- EDN: https://elibrary.ru/IJRSDR
- ID: 681431
Cite item
Abstract
The C3f peptide is a by-product of the regulation of the activated complement system with no firmly established function of its own. We have previously shown that C3f exhibits moderate antimicrobial activity against some Gram-positive bacteria in vitro. The occurrence of two histidine residues in the amino acid sequence of the peptide suggested an enhancement of its antimicrobial activity at lower pH and in the presence of metal cations, particularly zinc cations. Since such conditions can be realized in inflammatory foci, the study of the dependence of C3f activity on pH and the presence of metal cations provides an opportunity to assess the biological significance of the antimicrobial properties of the peptide. The peptide C3f and its analogs with histidine substitutions by lysines or serines, C3f[H/K] and C3f[H/S], were prepared by solid-phase synthesis. Using CD spectroscopy, we found that C3f contained a β-hairpin and unstructured regions; the presence of Zn2+ did not affect the conformation of the peptide. In the present work, it was shown that C3f can also exhibit antimicrobial activity against Gram-negative bacteria, in particular, Pseudomonas aeruginosa ATCC 27583. The action of the peptide on Ps. aeruginosa and Listeria monocytogenes EGD is accompanied by impairment of the barrier function of bacterial membranes. Zn2+ ions, unlike Cu2+ ions, enhanced the antimicrobial activity of C3f against L. monocytogenes, with 4- and 8-fold molar excess of Zn2+ being no more effective than a 20% excess. The activity of the C3f analogs was also enhanced to some extent by zinc ions. Thus, we hypothesize a histidine-independent formation of C3f–Zn2+ complexes leading to an increase in the total charge and antimicrobial activity of the peptide. In the presence of 0.15 M NaCl, C3f lost its activity regardless of the presence of Zn2+, indicating a minor role of C3f as an endogenous antimicrobial peptide. The presence of C3f abolished the bactericidal effect of Zn2+ against the zinc-sensitive Escherichia coli strain ESBL 521/17, indirectly confirming the interaction of the peptide with Zn2+. The activity of C3f against Micrococcus luteus A270, but not against L. monocytogenes, increased with decreasing pH. In this work, we show the significance of factors such as pH and metal cations in realizing the activity of antimicrobial peptides based on the example of C3f.
Full Text

About the authors
I. A. Krenev
Institute of Experimental Medicine
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg
E. V. Egorova
Institute of Experimental Medicine; Saint Petersburg State University
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg; 199034, Saint Petersburg
M. M. Khaydukova
Institute of Experimental Medicine; Research Institute of Hygiene, Occupational Pathology and Human Ecology
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg; 192019, Saint Petersburg
A. D. Mikushina
Institute of Experimental Medicine; Alferov University
Email: berlov.mn@iemspb.ru4
Russian Federation, 197022, Saint Petersburg; 194021, Saint Petersburg
Ya. A. Zabrodskaya
Institute of Experimental Medicine; Smorodintsev Research Institute of Influenza; Peter the Great Saint Petersburg Polytechnic University
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg; 197376, Saint Petersburg; 195251, Saint Petersburg
A. S. Komlev
Institute of Experimental Medicine
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg
I. E. Eliseev
Institute of Experimental Medicine; Alferov University
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg; 194021, Saint Petersburg
O. V. Shamova
Institute of Experimental Medicine; Saint Petersburg State University
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg; 199034, Saint Petersburg
M. N. Berlov
Institute of Experimental Medicine; Saint Petersburg State University
Author for correspondence.
Email: berlov.mn@iemspb.ru
Russian Federation, 197022, Saint Petersburg; 199034, Saint Petersburg
References
- Merle, N. S., Church, S. E., Fremeaux-Bacchi, V., and Roumenina, L. T. (2015) Complement system Part I – Molecular mechanisms of activation and regulation, Front. Immunol., 6, 262, https://doi.org/10.3389/fimmu. 2015.00262.
- Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V., and Roumenina, L. T. (2015) Complement system Part II: role in immunity, Front. Immunol., 6, 257, https://doi.org/10.3389/fimmu.2015.00257.
- Xie, C. B., Jane-Wit, D., and Pober, J. S. (2020) Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets, Am. J. Pathol., 190, 1138-1150, https://doi.org/10.1016/j.ajpath.2020.02.006.
- Егорова Е. В., Кренев И. А., Оборин Н. Н., Берлов М. Н. (2023) Антимикробная активность системы комплемента, Мед. Акад. Журн., 23, 31-45, https://doi.org/10.17816/MAJ322841.
- Radek, K., and Gallo, R. (2007) Antimicrobial peptides: natural effectors of the innate immune system, Semin. Immunopathol., 29, 27-43, https://doi.org/10.1007/s00281-007-0064-5.
- Moravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moosazadeh Moghaddam, M., and Mirnejad, R. (2018) Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria, Microb. Drug Resist., 24, 747-767, https://doi.org/10.1089/mdr.2017.0392.
- Zhang, Q. Y., Yan, Z. B., Meng, Y. M., Hong, X. Y., Shao, G., Ma, J. J., Cheng, X. R., Liu, J., Kang, J., and Fu, C. Y. (2021) Antimicrobial peptides: mechanism of action, activity and clinical potential, Mil. Med. Res., 8, 48, https://doi.org/10.1186/s40779-021-00343-2.
- Safronova, V. N., Bolosov, I. A., Panteleev, P. V., Balandin, S. V., and Ovchinnikova, T. V. (2023) Therapeutic potential and prospects of application of peptides in the era of the global spread of antibiotic resistance, Russ. J. Bioorg. Chem., 49, 435-447, https://doi.org/10.1134/S1068162023030172.
- Wang, G. (2014) Human antimicrobial peptides and proteins, Pharmaceuticals, 7, 545-594, https://doi.org/10.3390/ph7050545.
- Huan, Y., Kong, Q., Mou, H., and Yi, H. (2020) Antimicrobial peptides: Classification, design, application and research progress in multiple fields, Front. Microbiol., 11, 582779, https://doi.org/10.3389/fmicb.2020.582779.
- Zimmer, J., Hobkirk, J., Mohamed, F., Browning, M. J., and Stover, C. M. (2015) On the functional overlap between complement and anti-microbial peptides, Front. Immunol., 5, 689, https://doi.org/10.3389/fimmu.2014.00689.
- Nordahl, E. A., Rydengård, V., Nyberg, P., Nitsche, D. P., Mörgelin, M., Malmsten, M., Björck, L., and Schmidtchen, A. (2004) Activation of the complement system generates antibacterial peptides, Proc. Natl. Acad. Sci. USA, 48, 16879-16884, https://doi.org/10.1073/pnas.0406678101.
- Pasupuleti, M., Walse, B., Nordahl E., Mörgelin, M., Malmsten, M., and Schmidtchen A. (2007) Preservation of antimicrobial properties of complement peptide C3a, from Invertebrates to Humans, J. Biol. Chem., 282, 2520-2528, https://doi.org/10.1074/jbc.M607848200.
- Lachmann, P. J. (2019) The story of complement factor I, Immunobiology, 224, 511-517, https://doi.org/10.1016/ j.imbio.2019.05.003.
- Harrison, R. A., Farries, T. C., Northrop, F. D., Lachmann, P. J., and Davis, A. E. (1988) Structure of C3f, a small peptide specifically released during inactivation of the third component of complement, Complement, 5, 27-32, https://doi.org/10.1159/000463028.
- Ganu, V. S., Müller-Eberhard, H. J., and Hugli, T. E. (1989) Factor C3f is a spasmogenic fragment released from C3b by factors I and H: the heptadeca-peptide C3f was synthesized and characterized, Mol. Immunol., 10, 939-948, https://doi.org/10.1016/0161-5890(89)90112-0.
- Dousset, B., Straczek, J., Maachi, F., Nguyen, D. L., Jacob, C., Capiaumont, J., Nabet, P., and Belleville, F. (1998) Purification from human plasma of a hexapeptide that potentiates the sulfation and mitogenic activities of insulin-like growth factors, Biochem. Biophys. Res. Commun., 247, 587-591, https://doi.org/10.1006/bbrc.1998.8834.
- Xiang, Y., Matsui, T., Matsuo, K., Shimada, K., Tohma, S., Nakamura, H., Masuko, K., Yudoh, K., Nishioka, K., and Kato, T. (2007) Comprehensive investigation of disease-specific short peptides in sera from patients with systemic sclerosis: complement C3f-des-arginine, detected predominantly in systemic sclerosis sera, enhances proliferation of vascular endothelial cells, Arthritis Rheum., 56, 2018-2030, https://doi.org/ 10.1002/art.22645.
- Ourradi, K., Xu, Y., de Seny, D., Kirwan, J., Blom, A., and Sharif, M. (2017) Development and validation of novel biomarker assays for osteoarthritis. PloS One, 12, e0181334, https://doi.org/10.1371/journal.pone.0181334.
- Pozolotin, V. A., Umnyakova, E. S., Kopeykin, P. M., Komlev, A. S., Dubrovskii, Y. A., Krenev, I. A., Shamova, O. V., and Berlov, M. N. (2021) Evaluation of antimicrobial activity of the C3f peptide, a derivative of human C3 protein, Russ. J. Bioorg. Chem., 47, 741-748, https://doi.org/10.1134/S1068162021030158.
- Dubos, R. J. (1955) The micro-environment of inflammation or Metchnikoff revisited, Lancet, 266, 1-5, https://doi.org/10.1016/s0140-6736(55)93374-2.
- Lardner, A. (2001) The effects of extracellular pH on immune function, J. Leukoc. Biol., 69, 522-530, https://doi.org/10.1189/jlb.69.4.522.
- Milanino, R., Marrella, M., Gasperini, R., Pasqualicchio, M., and Velo, G. (1993) Copper and zinc body levels in inflammation: an overview of the data obtained from animal and human studies, Agents Actions, 39, 195-209, https://doi.org/10.1007/bf01998974.
- Sugarman, B. (1983) Zinc and infection, Rev. Infect. Dis., 5, 137-147, https://doi.org/10.1093/clinids/5.1.137.
- Eijkelkamp, B. A., Morey, J. R., Neville, S. L., Tan, A., Pederick, V. G., Cole, N., Singh, P. P., Ong, C. Y., Gonzalez de Vega, R., Clases, D., Cunningham, B. A., Hughes, C. E., Comerford, I., Brazel, E. B., Whittall, J. J., Plumptre, C. D., McColl, S. R., Paton, J. C., McEwan, A. G., Doble, P. A., and McDevitt, C. A. (2019) Dietary zinc and the control of Streptococcus pneumoniae infection, PLoS Pathog., 15, e1007957, https://doi.org/10.1371/journal. ppat.1007957.
- Bowdish, D. M. E., Davidson, D. J., and Hancock, R. E. W. (2005) A re-evaluation of the role of host defence peptides in mammalian immunity, Curr. Protein Pept. Sci., 6, 35-51, https://doi.org/10.2174/1389203053027494.
- Malik, E., Dennison, S. R., Harris, F., and Phoenix, D. A. (2016) pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents, Pharmaceuticals, 9, 67, https://doi.org/10.3390/ph9040067.
- Li, S., and Hong, M. (2011) Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR, J. Am. Chem. Soc., 133, 1534-1544, https://doi.org/10.1021/ja108943n.
- Xu, T., Levitz, S. M., Diamond, R. D., and Oppenheim, F. G. (1991) Anticandidal activity of major human salivary histatins, Infect. Immun., 59, 2549-2554, https://doi.org/10.1128/iai.59.8.2549-2554.1991.
- Mochon, A. B., and Liu, H. (2008) The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm, PLoS Pathog., 4, e1000190, https://doi.org/10.1371/journal.ppat.1000190.
- Maisetta, G., Petruzzelli, R., Brancatisano, F. L., Esin, S., Vitali, A., Campa, M., and Batoni, G. (2010) Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: Effect of copper and acidic pH, Peptides, 31, 1995-2002, https://doi.org/10.1016/j.peptides.2010.08.007.
- Holdbrook, D. A., Singh, S., Choong, Y. K., Petrlova, J., Malmsten, M., Bond, P. J., Verma, N. K., Schmidtchen, A., and Saravanan, R. (2018) Influence of pH on the activity of thrombin-derived antimicrobial peptides, Biochim. Biophys Acta Biomembr., 1860, 2374-2384, https://doi.org/10.1016/j.bbamem.2018.06.002.
- McDonald, M., Mannion, M., Pike, D., Lewis, K., Flynn, A., Brannan, A. M., Browne, M. J., Jackman, D., Madera, L., Power Coombs, M. R., Hoskin, D. W., Rise, M. L., and Booth, V. (2015) Structure-function relationships in histidine-rich antimicrobial peptides from Atlantic cod, Biochim. Biophys. Acta, 1848, 1451-1461, https:// doi.org/10.1016/j.bbamem.2015.03.030.
- Shang, D., Sun, Y., Wang, C., Wei, S., Ma, L., and Sun, L. (2012) Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis, Appl. Microbiol. Biotechnol., 96, 1551-1560, https://doi.org/10.1007/s00253-012-4148-3.
- Alexander, J. L., Thompson, Z., and Cowan, J. A. (2018) Antimicrobial metallopeptides, ACS Chem. Biol., 13, 844-853, https://doi.org/10.1021/acschembio.7b00989.
- Donaghy, C., Javellana, J. G., Hong, Y. J., Djoko, K., and Angeles-Boza, A. M. (2023) The synergy between zinc and antimicrobial peptides: an insight into unique bioinorganic interactions, Molecules, 28, 2156, https:// doi.org/10.3390/molecules28052156.
- Miller, A., Matera-Witkiewicz, A., Mikołajczyk, A., Wieczorek, R., and Rowińska-Żyrek, M. (2021) Chemical “butterfly effect” explaining the coordination chemistry and antimicrobial properties of clavanin complexes, Inorg. Chem., 60, 12730-12734, https://doi.org/10.1021/acs.inorgchem.1c02101.
- McCaslin, T. G., Pagba, C. V., Yohannan, J., and Barry, B. A. (2019) Specific metallo-protein interactions and antimicrobial activity in Histatin-5, an intrinsically disordered salivary peptide, Sci. Rep., 9, 17303, https:// doi.org/10.1038/s41598-019-52676-7.
- Rydengård, V., Andersson, E. N., and Schmidtchen, A. (2006) Zinc potentiates the antibacterial effects of histidine-rich peptides against Enterococcus faecalis, FEBS J., 273, 2399-2406, https://doi.org/10.1111/ j.1742-4658.2006.05246.x.
- Edström, A. M., Malm, J., Frohm, B., Martellini, J. A., Giwercman, A., Mörgelin, M., Cole, A. M., and Sørensen, O. E. (2008) The major bactericidal activity of human seminal plasma is zinc-dependent and derived from fragmentation of the semenogelins, J. Immunol., 181, 3413-3421, https://doi.org/10.4049/jimmunol. 181.5.3413.
- Juliano, S. A., Pierce, S., deMayo, J. A., Balunas, M. J., and Angeles-Boza, A. M. (2017) Exploration of the innate immune system of Styela clava: Zn2+ binding enhances the antimicrobial activity of the tunicate peptide clavanin A, Biochemistry, 56, 1403-1414, https://doi.org/10.1021/acs.biochem.6b01046.
- Fields, G. B., and Noble, R. L. (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Pept. Protein Res., 35, 161-214, https://doi.org/10.1111/j.1399-3011.1990.tb00939.x.
- Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y. H., Goto, Y., Réfrégiers, M., and Kardos, J. (2018) BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra, Nucleic Acids Res., 46, W315-W322, https://doi.org/10.1093/nar/gky497.
- Berlov, M. N., Korableva, E. S., Andreeva, Yu. V., Ovchinnikova, T. V., and Kokryakov, V. N. (2007) Lactoferrin from canine neutrophils: isolation and physicochemical and antimicrobial properties, Biochemistry (Moscow), 72, 445-451, https://doi.org/10.1134/S0006297907040128.
- Gant, V. A., Warnes, G., Phillips, I., and Savidge, G. F. (1993) The application of flow cytometry to the study of bacterial responses to antibiotics, J. Med. Microbiol., 39, 147-154, https://doi.org/10.1099/00222615-39-2-147.
- Stiefel, P., Schmidt-Emrich, S., Maniura-Weber, K., and Ren, Q. (2015) Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide, BMC Microbiol., 15, 36, https://doi.org/10.1186/s12866-015-0376-x.
- Osorio, D., Rondón-Villarreal, P., and Torres, R. (2015) Peptides: a package for data mining of antimicrobial peptides, RJ, 7, 4-14, https://doi.org/10.32614/rj-2015-001.
- Janssen, B. J., Huizinga, E. G., Raaijmakers, H. C., Roos, A., Daha, M. R., Nilsson-Ekdahl, K., Nilsson, B., and Gros, P. (2005) Structures of complement component C3 provide insights into the function and evolution of immunity, Nature, 437, 505-511, https://doi.org/10.1038/nature04005.
- Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, J. Mol. Graph., 14, 33-38, https://doi.org/10.1016/0263-7855(96)00018-5.
- Petersen, B., Lundegaard, C., and Petersen, T. N. (2010) NetTurnP – neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features, PLoS One, 5, e15079, https:// doi.org/10.1371/journal.pone.0015079.
- Tossi, A., Sandri, L., and Giangaspero, A. (2000) Amphipathic, alpha-helical antimicrobial peptides, Biopolymers, 55, 4-30, https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M.
- Nagaoka, I., Hirota, S., Yomogida, S., Ohwada, A., and Hirata, M. (2000) Synergistic actions of antibacterial neutrophil defensins and cathelicidins, Inflamm. Res., 49, 73-79, https://doi.org/10.1007/s000110050561.
- Vallee, B. L., and Auld, D. S. (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins, Biochemistry, 29, 5647-5659, https://doi.org/10.1021/bi00476a001.
- Li, J., Ren, X., Fan, B., Huang, Z., Wang, W., Zhou, H., Lou, Z., Ding, H., Lyu, J., and Tan, G. (2019) Zinc toxicity and iron-sulfur cluster biogenesis in Escherichia coli, Appl. Environ. Microbiol., 85, e01967-18, https://doi.org/10.1128/AEM.01967-18.
- Brocklehurst, K. R., and Morby, A. P. (2000) Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology, Microbiology (Reading), 146, 2277-2282, https://doi.org/10.1099/ 00221287-146-9-2277.
- Park, J., Oh, J. H., Kang, H. K., Choi, M. C., Seo, C. H., and Park, Y. (2020) Scorpion-venom-derived antimicrobial peptide Css54 exerts potent antimicrobial activity by disrupting bacterial membrane of zoonotic bacteria, Antibiotics (Basel), 9, 831, https://doi.org/10.3390/antibiotics9110831.
- Dorey, A., Marinho, C., Piveteau, P., and O’Byrne, C. (2019) Role and regulation of the stress activated sigma factor sigma B (σB) in the saprophytic and host-associated life stages of Listeria monocytogenes, Adv. Appl. Microbiol., 106, 1-48, https://doi.org/10.1016/bs.aambs.2018.11.001.
- Gahan, C. G., O’Driscoll, B., and Hill, C. (1996) Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation, Appl. Environ. Microbiol., 62, 3128-3132, https://doi.org/10.1128/aem.62.9.3128-3132.1996.
- Van Schaik, W., Gahan, C. G., and Hill, C. (1999) Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147, J. Food Prot., 62, 536-539, https://doi.org/10.4315/ 0362-028x-62.5.536.
- Bonnet, M., and Montville, T. J. (2005) Acid-tolerant Listeria monocytogenes persist in a model food system fermented with nisin-producing bacteria, Lett. Appl. Microbiol., 40, 237-242, https://doi.org/10.1111/ j.1472-765X.2005.01661.x.
Supplementary files
