Dual-Reporter SARS-CoV-2 Replicon for Screening Viral Polymerase Inhibitors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To prepare a safe cellular system for testing inhibitors targeting the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, a genetic construct containing viral cDNA with two blocks of reporter genes while lacking genes encoding the structural S, E and M proteins was engineered. The first reporter block, consisting of renilla luciferase and green fluorescent protein (Rluc-GFP), located upstream of the SARS-CoV-2 5′-UTR. Meanwhile, the second block, represented by firefly luciferase and red fluorescent protein (Fluc-RFP), was positioned downstream of the transcription regulatory sequence (TRS-N). Although the first block of reporter genes can be transcribed by both viral RdRp and cellular polymerases, the second block can only be transcribed by the viral polymerase, aligning with the Coronaviridae discontinuous transcription mechanism. This allowed us to accurately assess the effectiveness of viral RdRp inhibition. To facilitate the search for nucleoside RdRp inhibitors the cell line was obtained expressing herpes simplex virus thymidine kinase which provides the first stage of nucleoside phosphorylation. When screening the ability of a number of compounds to inhibit the catalytic activity of SARS-CoV-2 RdRp, we first discovered the antiviral activity of 2′-amino2′-deoxyadenosine and adenosine-N1-oxide, exceeding the activity of molnupiravir, a therapeutic agent used in the treatment of COVID-19.

Full Text

Restricted Access

About the authors

S. P. Korolev

Lomonosov Moscow State University

Author for correspondence.
Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

A. A. Shulepova

Lomonosov Moscow State University

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

A. N. Anisenko

Lomonosov Moscow State University

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

S. O. Galkin

Lomonosov Moscow State University

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

L. A. Alexandrova

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

M. V. Yasko

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

E. S. Matyugina

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

M. S. Novikov

Volgograd State Medical University

Email: spkorolev@mail.ru
Russian Federation, 400131, Volgograd

A. L. Khandazhinskaya

Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

S. N. Kochetkov

Lomonosov Moscow State University; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow; 119991, Moscow

M. B. Gottikh

Lomonosov Moscow State University

Email: spkorolev@mail.ru
Russian Federation, 119991, Moscow

References

  1. Amani, B., and Amani, B. (2023) Efficacy and safety of nirmatrelvir/ritonavir (Paxlovid) for COVID-19: A rapid review and meta-analysis, J. Med. Virol., 95, e28441, https://doi.org/10.1002/jmv.28441.
  2. Sola, I., Almazan, F., Zuniga, S., and Enjuanes, L. (2015) Continuous and discontinuous RNA synthesis in coronaviruses, Annu. Rev. Virol., 2, 265-288, https://doi.org/10.1016/S0065-3527(06)66005-3.
  3. Masters, P. S. (2006) The molecular biology of coronaviruses, Adv. Virus Rev., 66, 193-292, https://doi.org/10.1016/S0065-3527(06)66005-3.
  4. Kurhade, C., Xie, X., and Shi, P.-Y. (2023) Reverse genetic systems of SARS-CoV-2 for antiviral research, Antiviral Res., 210, 105486, https://doi.org/10.1016/j.antiviral.2022.105486.
  5. Галкин С. О., Анисенко А. Н., Шадрина О. А., Готтих М. Б. (2022) Генно-инженерные системы для изучения вирусных патогенов человека из семейства Coronaviridae, Мол. Биол., 56, 82-102, https://doi.org/10.31857/S0026898422010025.
  6. Chiem, K., Ye, C., and Martinez-Sobrido, L. (2020) Generation of recombinant SARS-CoV-2 using a bacterial artificial chromosome, Curr. Protoc. Microbiol., 59, e126, https://doi.org/10.1002/cpmc.126.
  7. Chiem, K., Park, J., Morales Vasquez, D., Plemper, R. K., Torrelles, J. B., Kobie, J. J., Walter, M. R., Ye, C., and Martinez-Sobrido, L. (2022) Monitoring SARS-CoV-2 infection using a double reporter-expressing virus, Microbiol. Spect., 10, e0237922, https://doi.org/10.1128/spectrum.02379-22.
  8. Ye, C., and Martinez-Sobrido, L. (2022) Use of a bacterial artificial chromosome to generate recombinant SARS-CoV-2 expressing robust levels of reporter genes, Microbiol. Spectr., 10, e0273222, https://doi.org/10.1128/ spectrum.02732-22.
  9. Chiem, K., Morales Vasquez, D., Park, J. G., Platt, R. N., Anderson, T., Walter, M. R., Kobie, J. J., Ye, C., and Martinez-Sobrido, L. (2021) Generation and Characterization of recombinant SARS-CoV-2 expressing reporter genes, J. Virol. 95, e0220920, https://doi.org/10.1128/JVI.02209-20.
  10. Jin, Y.-Y., Lin, H., Cao, L., Wu, W.-C., Ji, Y., Du, L., Jiang, Y., Xie, Y., Tong, K., Xing, F., Zheng, F., Shi, M., Pan, J.-A., Peng, X., and Guo, D. (2021) A convenient and biosafe replicon with accessory genes of SARS-CoV-2 and its potential application in antiviral drug discovery, Virol. Sin., 36, 913-923, https://doi.org/10.1007/s12250-021-00385-9.
  11. Zhang, Q. Y., Deng, C. L., Liu, J., Li, J. Q., Zhang, H. Q., Li, N., Zhang, Y. N., Li, X. D., Zhang, B., Xu, Y., and Ye, H. Q. (2021) SARS-CoV-2 replicon for high-throughput antiviral screening, J. Gen. Virol., 102, 001583, https:// doi.org/10.1099/jgv.0.001583.
  12. Kotaki, T., Xie, X., Shi, P. Y., and Kameoka, M. (2021) A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation, Sci. Rep., 11, 2229, https://doi.org/10.1016/j.antiviral.2022.105486.
  13. Wang, B., Zhang, C., Lei, X., Ren, L., Zhao, Z., Wang, J., and Huang, H. (2021) Construction of non-infectious SARS-CoV-2 replicons and their application in drug evaluation, Virol. Sin., 36, 5, 890-900, https://doi.org/10.1007/s12250-021-00369-9.
  14. He, X., Quan, S., Xu, M., Rodriguez, S., Goh, S. L., Wei, J., Fridman, A., Koeplinger, K. A., Carroll, S. S., Grobler, J. A., Espeseth, A. S., Olsen, D. B., Hazuda, D. J., and Wang, D. (2021) Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing, Proc. Natl. Acad. Sci. USA, 118, e2025866118, https:// doi.org/10.1073/pnas.2025866118.
  15. Luo, Y., Yu, F., Zhou, M., Liu, Y., Xia, B., Zhang, X., Liu, J., Zhang, J., Du, Y., Li, R., Wu, L., Zhang, X., Pan, T., Guo, D., Peng, T., and Zhang, H. (2021) Engineering a reliable and convenient SARS-CoV-2 replicon system for analysis of viral RNA synthesis and screening of antiviral inhibitors, mBio, 12, e02754-20, https://doi.org/10.1128/mBio.02754-20.
  16. Kwong, C. D., Krauth, C. A., Shortnacy-Fowler, A. T., Arnett, G., Hollingshead, M. G., Shannon, W. M., Montgomery, J. A., and Secrist, J. A. III (1998) Synthesis and antiviral evaluation of analogs of adenosine-N1-oxide and 1-(benzyloxy)adenosine, Nucleosid. Nucleotid., 17, 1409-1443, https://doi.org/10.1080/07328319808003478.
  17. Alexandrova, L. A., and Smrt, J. (1977) Synthesis of cytidylyl-(3′->5′)-2′-O(and 3′-O)-methyladenosine 3′-O(and 2′-O)-N-formyl-L-methionyl derivatives, Collection Czech. Chem. Commun., 42, 1694-1704, https://doi.org/10.1135/cccc19771694.
  18. Шаркин Ю. А., Ясько М. В., Скоблов А. Ю., Александрова Л. А. (1996) Синтез 5′-H-фосфонатов и фторфосфатов 2′-модифицированных нуклеозидов, Биоорг. Хим., 22, 297-302.
  19. Klimenko, A., Matyugina, E., Logashenko, E., Solyev, P., Zenkova, M., Kochetkov, S., and Khandazhinskaya, A. (2018) Novel 5′-norcarbocyclic derivatives of bicyclic pyrrolo-and furano[2,3-d]pyrimidine nucleosides, Molecules, 23, 2654, https://doi.org/10.3390/molecules23102654.
  20. Siniavin, A. E., Novikov, M. S., Gushchin, V. A., Terechov, A. A., Ivanov, I. A., Paramonova, M. P., Gureeva, E. S., Russu, L. I., Kuznetsova, N. A., Shidlovskaya, E. V., Luyksaar, S. I., Vasina, D. V., Zolotov, S. A., Zigangirova, N. A., Logunov, D. A., and Gintsburg, A. L. (2022) Antiviral activity of N1,N3-disubstituted uracil derivatives against SARS-CoV-2 variants of concern, Int. J. Mol. Sci., 23, 10171, https://doi.org/10.3390/ijms231710171.
  21. Wang, Y., Wang, F., Wang, R., Zhao, P., and Xia, Q. (2015) 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori, Sci. Rep., 5, 16273, https://doi.org/10.1038/srep16273.
  22. Almazan, F., DeDiego, M. L., Galan, C., Escors, D., Alvarez, E., Ortego, J., Sola, I., Zuniga, S., Alonso, S., Moreno, J. L., Nogales, A., Capiscol, C., and Enjuanes, L. (2006) Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis, J. Virol., 80, 10900-10906, https://doi.org/10.1128/JVI.00385-06.
  23. Ye, C., Chiem, K., Park, J.-G., Oladunni, F., Platt, R. N., Anderson, T., and Martinez-Sobrido, L. (2020) Rescue of SARS-CoV-2 from a single bacterial artificial chromosome, mBio, 11, e02168-20, https://doi.org/10.1128/mbio.02168-20.
  24. Wright, D. A., Thibodeau-Beganny, S., Sander, J. D., Winfrey, R. J., Hirsh, A. S., Eichtinger, M., Fu, F., Porteus, M. H., Dobbs, D., Voytas, D. F., and Joung, J. K. (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly, Nat. Protoc., 1, 1637-1652, https://doi.org/10.1038/nprot.2006.259.
  25. Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X., Li, J., Yang, H., Liu, Z., Xu, W., Guddat, L. W., Wang, Q., Lou, Z., and Rao, Z. (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus, Science, 368, 779-782, https://doi.org/10.1126/science.abb7498.
  26. Emeny, J. M., and Morgan, M. J. (1979) Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production, J. Gen. Virol., 43, 247-252, https://doi.org/10.1099/0022-1317-43-1-247.
  27. Chew, T., Noyce, R., Collins, S. E., Hancock, M. H., and Mossman, K. L. (2009) Characterization of the interferon regulatory factor 3-mediated antiviral response in a cell line deficient for IFN production, Mol. Immunol., 46, 393-399, https://doi.org/10.1016/j.molimm.2008.10.010.
  28. Guettari, N., Loubiere, L., Brisson., E., and Klatzmann, D. (1997) Use of herpes simplex virus thymidine kinase to improve the antiviral activity of zidovudine, Virology, 235, 398-405, https://doi.org/10.1006/viro.1997.8706.
  29. Tian, L., Pang, Z., Li, M., Lou, F., An, X., Zhu, S., Song, L., Tong, Y., Fan, H., Fan, J. (2022) Molnupiravir and its antiviral activity against COVID-19, Front. Immunol., 13, 855496, https://doi.org/10.3389/fimmu.2022.855496.
  30. Elion, G. B., Furman, P. A., Fyfe, J. A., De Miranda, P., Beauchamp, L., and Schaeffer, H. J. (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine, Proc. Natl. Acad. Sci. USA, 74, 5716-5720, https://doi.org/10.1073/pnas.74.12.5716.
  31. Freeman, S., and Gardiner, J. M. (1996) Acyclic nucleosides as antiviral compounds, Mol. Biotechnol., 5, 125-137, https://doi.org/10.1007/BF02789061.
  32. Hurst, M., and Noble, S. (1999) Stavudine: an update of its use in the treatment of HIV infection, Drugs, 58, 919-949, https://doi.org/10.2165/00003495-199958050-00012.
  33. Матюгина Е. С., Новиков М. С., Козловская Л. И., Волок В. П., Шустова Е. Ю., Ишмухаметов А. А., Кочетков С. Н., Хандажинская А. Л. (2021) Оценка противовирусного потенциала модифицированных гетероциклических оснований и 5′-норкарбоциклических аналогов нуклеозидов в отношении SARS-CoV-2, Acta Naturae, 13, 78-81, https://doi.org/10.32607/actanaturae.11479.
  34. Lai, M. M., and Cavanagh, D. (1997) The molecular biology of coronaviruses, Adv. Virus Res., 48, 1-100, https://doi.org/10.1016/S0065-3527(08)60286-9.
  35. Shizuya, H., Birren, B., Kim, U. J., Mancino, V., Slepak, T., Tachiiri, Y., and Simon, M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector, Proc. Natl. Acad. Sci. USA, 89, 8794-8797, https://doi.org/10.1073/pnas.89.18.8794.
  36. Adler, H., Messerle, M., and Koszinowski, U. H. (2003) Cloning of herpesviral genomes as bacterial artificial chromosomes, Rev. Med. Virol., 13, 111-121, https://doi.org/10.1002/rmv.380.
  37. Singh, A. K., and Das, K. (2022) Insights into HIV-1 reverse transcriptase (RT) inhibition and drug resistance from thirty years of structural studies, Viruses, 14, 1027, https://doi.org/10.3390/v14051027.
  38. Lisco, A., Vanpouille, C., Tchesnokov, E. P., Grivel, J. C., Biancotto, A., Brichacek, B., Elliott, J., Fromentin, E., Shattock, R., Anton, P., Gorelick, R., Balzarini, J., McGuigan, C., Derudas, M., Gotte, M., Schinazi, R. F., and Margolis, L. (2008) Acyclovir is activated into a HIV-1 reverse transcriptase inhibitor in herpesvirus-infected human tissues, Cell Host Microbe, 4, 260-270, https://doi.org/10.1016/j.chom.2008.07.008.
  39. Jockusch, S., Tao, C., Li, X., Anderson, T. K., Chien, M., Kumar, S., Russo, J. J., Kirchdoerfer, R. N., and Ju, J. (2020) A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19, Antiviral Res., 180, 104857, https://doi.org/10.1016/j.antiviral.2020.104857.
  40. Huang, P., Farquhar, D., and Plunkett, W. (1992) Selective action of 2’,3’-didehydro-2’,3’-dideoxythymidinetriphosphate on human immunodeficiency virus reverse transcriptase and human DNA polymerases, J. Biol. Chem., 267, 2817-2822.
  41. Matyugina, E., Petushkov, I., Surzhikov, S., Kezin, V., Maslova, A., Ivanova, O., Smirnova, O., Kirillov, I., Fedyakina, I., Kulbachinskiy, A., Kochetkov, S., and Khandazhinskaya, A. (2023) Nucleoside analogs that inhibit SARS-CoV-2 replication by blocking interaction of virus polymerase with RNA, Int. J. Mol. Sci., 24, 3361, https://doi.org/10.3390/ijms24043361.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Model of a full-length SARS-CoV-2 replicon with two reporter gene blocks. The first Rluc-GFP reporter gene block is located within ORF1a under the control of the CMV promoter, while the second Fluc-RFP block is located between the protein N gene and the 3′-UTR and can only be transcribed by viral RdRp via a discontinuous transcription mechanism. Below is a schematic of the 6 virus cDNA fragments from which the full-length replicon was assembled and cloned into the pBAC_lacZ plasmid using the Golden Gate approach

Download (136KB)
3. Fig. 2. Schematic of the functioning of the replicon. Expression of the first reporter (Rluc) can occur either through transcription from vector DNA (BAC) by cellular RNA polymerase II (RNAPII) or through replication of viral RNA under the action of RdRp. The second reporter (Fluc) can be transcribed only by viral RdRp through the mechanism of interrupted transcription

Download (137KB)
4. Fig. 3. Comparison of expression levels of renilla (Rluc) and firefly (Fluc) luciferases in Vero E6 cells transfected with REP and REP_mut replicons. Mean values from at least 3 experiments ± standard deviation are presented

Download (47KB)
5. Fig. 4. Validation of the inhibitory activity of zidovudine (a) and acyclovir (b) in Vero E6 (solid line) and Vero E6_TK (dashed line) cell lines transduced with a replication-incompetent HIV-1-based vector encoding a firefly luciferase reporter protein. Mean values from at least 3 experiments ± standard deviation are presented

Download (82KB)
6. Fig. 5. Structures of the studied compounds

Download (188KB)
7. Fig. 6. Results of the ability of compounds, molnupiravir (a), acyclovir (b), 2′-adenosine-N1-oxide (c), amino-2′-deoxyadenosine (d), and 3′-O-methyladenosine (e), stavudine (f), LN140 (g), and Z876 (h), inhibit RdRp activity of SARS-CoV-2 using the REP replicon in Vero E6 (solid line) and Vero E6_TK (dashed line) cell lines. Mean values from at least 4 experiments ± standard deviation are presented

Download (339KB)

Copyright (c) 2024 Russian Academy of Sciences