Vimentin and Desmin Intermediate Filaments Maintain Mitochondrial Membrane Potential

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Intermediate filaments (IF) are one of the three main components of the cytoskeleton in animal cells, characterized by the diverse range of proteins that represent them in different cell types. They provide mechanical strength to cells and help position the nucleus and various organelles within the cell. Desmin is an IF protein characteristic of muscle cells, while vimentin, which has a similar structure, is found in many mesenchymal cells. During myogenesis and the regeneration of damaged muscle tissue, both of these proteins can be expressed, forming a mixed IF network. Each protein is known to regulate mitochondrial function in the cells where it is present, including mitochondrial localization and the maintenance of mitochondrial membrane potential. However, the regulation of mitochondrial function in cells with mixed IFs remains unclear. To investigate how the simultaneous presence of these proteins affects mitochondrial membrane potential, we utilized BHK21 cells as a model system, expressing both vimentin and desmin IFs. The expression of either protein individually or both proteins simultaneously was suppressed using gene knockout and/or RNA interference. It was found that removal of either protein did not affect the mitochondrial membrane potential, which remained unchanged compared to when both proteins were present. Simultaneous removal of both proteins resulted in a 20% reduction in mitochondrial membrane potential, indicating that vimentin and desmin both play a critical role in its maintenance.

Full Text

Restricted Access

About the authors

A. A. Dayal

Institute of Protein Research of the Russian Academy of Sciences

Email: alexminin@gmail.com
Russian Federation, 142290, Pushchino, Moscow Region

O. I. Parfentyeva

Institute of Protein Research of the Russian Academy of Sciences

Email: alexminin@gmail.com
Russian Federation, 142290, Pushchino, Moscow Region

W. Huiying

Institute of Protein Research of the Russian Academy of Sciences

Email: alexminin@gmail.com
Russian Federation, 142290, Pushchino, Moscow Region

A. S. Shakhov

Institute of Protein Research of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: alexminin@gmail.com
Russian Federation, 142290, Pushchino, Moscow Region; 119992, Moscow

I. B. Alieva

Institute of Protein Research of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: alexminin@gmail.com
Russian Federation, 142290, Pushchino, Moscow Region; 119992, Moscow

A. A. Minin

Institute of Protein Research of the Russian Academy of Sciences

Author for correspondence.
Email: alexminin@gmail.com
Russian Federation, 142290, Pushchino, Moscow Region

References

  1. Kennedy, E. P., and Lehninger, A. L. (1949) Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria, J. Biol. Chem., 179, 957-972.
  2. Muller, F. (2000) The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging, J. Am. Aging Assoc., 23, 227-253, https://doi.org/10.1007/s11357-000-0022-9.
  3. Thayer, S. A., and Miller, R. J. (1990) Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro, J. Physiol., 425, 85-115, https://doi.org/10.1113/jphysiol.1990.sp018094.
  4. Wolvetang, E. J., Johnson, K. L., Krauer, K., Ralph, S. J., and Linnane, A. W. (1994) Mitochondrial respiratory chain inhibitors induce apoptosis, FEBS Lett., 339, 40-44, https://doi.org/10.1016/0014-5793(94)80380-3.
  5. Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., Lam, H. C., Englert, J. A., Rabinovitch, M., Cernadas, M., Kim, H. P., Fitzgerald, K. A., Ryter, S. W., and Choi, A. M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome, Nat. Immunol., 12, 222-230, https://doi.org/10.1038/ni.1980.
  6. Cavalli, L. R., Varella-Garcia, M., and Liang, B. C. (1997) Diminished tumorigenic phenotype after depletion of mitochondrial DNA, Cell Growth Differ., 8, 1189-1198.
  7. Morais, R., Zinkewich-Péotti, K., Parent, M., Wang, H., Babai, F., and Zollinger, M. (1994) Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA, Cancer Res., 54, 3889-3896.
  8. Manoli, I., Alesci, S., Blackman, M. R., Su, Y. A., Rennert, O. M., and Chrousos, G. P. (2007) Mitochondria as key components of the stress response, Trends Endocrinol. Metab., 18, 190-198, https://doi.org/10.1016/j.tem.2007.04.004.
  9. Davies, K. J. A., Packer, L., and Brooks, G. A. (1981) Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training, Arch. Biochem. Biophys., 209, 539-554, https://doi.org/10.1016/ 0003-9861(81)90312-x.
  10. Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M. (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases, Lancet, 333, 642-645, https://doi.org/10.1016/s01406736(89)92145-4.
  11. Mitchell, P. D. (1981) Chemiosmotic Proton Circuits in Biological Membranes (Skulachev, V. P., and Hinkle, P. C., eds), Addison-Wesley, Advanced Book Program/World Science Division, University of Michigan, pp. 633.
  12. Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M., and Youle, R. J. (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin, J. Cell Biol., 191, 1367-1380, https://doi.org/10.1083/jcb.201007013.
  13. Green, D. R., and Reed, J. C. (1998) Mitochondria and apoptosis, Science, 281, 1309-1312, https://doi.org/10.1126/science.281.5381.1309.
  14. Vasan, K., Clutter, M., Fernandez Dunne, S., George, M. D., Luan, C. H., Chandel, N. S., and Martínez-Reyes, I. (2022) Genes involved in maintaining mitochondrial membrane potential upon electron transport chain disruption, Front. Cell Dev. Biol., 10, 781558, https://doi.org/10.3389/fcell.2022.781558.
  15. Begum, H. M., and Shen, K. (2023) Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells, WIREs Mech. Dis., 15, e1595, https://doi.org/10.1002/wsbm.1595.
  16. Uttam, J., Hutton, E., Coulombe, P. A., Anton-Lamprecht, I., Yu, Q. C., Gedde-Dahl, T., Fine, J. D., and Fuchs, E. (1996) The genetic basis of epidermolysis bullosa simplex with mottled pigmentation, Proc. Natl. Acad. Sci. USA, 93, 9079-9084, https://doi.org/10.1073/pnas.93.17.9079.
  17. Kumar, V., Bouameur, J.-E., Bär, J., Rice, R. H., Hornig-Do, H.-T., Roop, D. R., Schwarz, N., Brodesser, S., Thiering, S., Leube, R. E., et al. (2015) A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity, J. Cell Biol., 211, 1057-1075, https://doi.org/10.1083/jcb.201404147.
  18. Kumemura, H., Harada, M., Yanagimoto, C., Koga, H., Kawaguchi, T., Hanada, S., Taniguchi, E., Ueno, T., and Sata, M. (2008) Mutation in keratin 18 induces mitochondrial fragmentation in liver-derived epithelial cells, Biochem. Biophys. Res. Commun., 367, 33-40, https://doi.org/10.1016/j.bbrc.2007.12.116.
  19. Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V. I., Goldman, R. D., Minin, A. A. (2015) Mitochondrial membrane potential is regulated by vimentin intermediate filaments, FASEB J., 29, 820, https://doi.org/10.1096/ fj.14-259903.
  20. Capetanaki, Y. (2002) Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function, Trends Cardiovasc. Med., 12, 339-348, https://doi.org/10.1016/s1050-1738(02)00184-6.
  21. Guichard, J. L., Rogowski, M., Agnetti, G., Fu, L., Powell, P., Wei, C. C., Collawn, J., and Dell’Italia, L. J. (2017) Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure, Am. J. Physiol. Heart Circ. Physiol., 313, H32-H45, https://doi.org/10.1152/ajpheart.00027.2017.
  22. Milner, D. J., Weitzer, G., Tran, D., Bradley, A., and Capetanaki, Y. (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin, J. Cell Biol., 134, 1255-1270, https://doi.org/10.1083/ jcb.134.5.1255.
  23. Milner, D. J., Mavroidis, M., Weisleder, N., and Capetanaki, Y. (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function, J. Cell Biol., 150, 1283-1298, https://doi.org/10.1083/ jcb.150.6.1283.
  24. Vrabie, A., Goldfarb, L. G., Shatunov, A., Nägele, A., Fritz, P., Kaczmarek, I., and Goebel, H. H. (2005) The enlarging spectrum of desminopathies: new morphological findings, eastward geographic spread, novel exon 3 desmin mutation, Acta Neuropathol., 109, 411-417, https://doi.org/10.1007/s00401-005-0980-1.
  25. Dayal, A. A., Medvedeva, N. V., and Minin, A. A. (2022) N-Terminal fragment of vimentin is responsible for binding of mitochondria in vitro, Biochemistry (Moscow) Suppl. Ser. A Membr. Cell Biol., 16, 151-157, https://doi.org/ 10.1134/S1990747822030059.
  26. Dayal, A. A., Medvedeva, N. V., Nekrasova, T. M., Duhalin, S. D., Surin, A. K., and Minin, A. A. (2020) Desmin interacts directly with mitochondria, Int. J. Mol. Sci., 21, 8122, https://doi.org/10.3390/ijms21218122.
  27. Bornemann, A., and Schmalbruch, H. (1992) Desmin and vimentin in regenerating muscles, Muscle Nerve, 15, 14-20, https://doi.org/10.1002/mus.880150104.
  28. Mohamed, J. S., and Boriek, A. M. (2012) Loss of desmin triggers mechanosensitivity and up-regulation of Ankrd1 expression through Akt-NF-κB signaling pathway in smooth muscle cells, FASEB J., 26, 757-765, https://doi.org/10.1096/fj.10-160291.
  29. Mendez, M. G., Kojima, S., and Goldman, R. D. (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition, FASEB J., 24, 1838-1851, https://doi.org/10.1096/ fj.09-151639.
  30. Kojima, S., Vignjevic, D., and Borisy, G. G. (2004) Improved silencing vector co-expressing GFP and small hairpin RNA, Biotechniques, 36, 74-79, https://doi.org/10.2144/04361ST02.
  31. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819-823, https:// doi.org/10.1126/science.1231143.
  32. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-695, https://doi.org/10.1038/227680a0.
  33. Steinert, P. M., Chou, Y. H., Prahlad, V., Parry, D. A., Marekov, L. N., Wu, K. C., Jang, S. I., and Goldman, R. D. (1999) A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin, J. Biol. Chem., 274, 9881-9890, https://doi.org/10.1074/jbc.274.14.9881.
  34. Schwarz, N., and Leube, R. (2016) Intermediate filaments as organizers of cellular space: how they affect mitochondrial structure and function, Cells, 5, 30, https://doi.org/10.3390/cells5030030.
  35. Alieva, I. B., Shakhov, A. S., Dayal, A. A., Parfenteva, O. I., Minin, A. A. (2024) Unique role of vimentin in the intermediate filament proteins family, Biochemistry (Moscow), 89, 726-736, https://doi.org/10.1134/S0006297924040114.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Vimentin (green) and desmin (red) PFs in VNK21 cells detected with the respective antibodies. Images were obtained using high-resolution microscopy. Scale bar 10 μm

Download (112KB)
3. Fig. 2. Destruction of desmin (a, b) and vimentin (c, d) PFs by RNA interference in VNK21 cells transfected with plasmids pG-SHIN2-des and pG-SHIN2-vim, respectively. Control cells (e, f) were transfected with plasmid pG-SHIN2-scr. PFs were stained using antibodies against desmin (Des) and vimentin (Vim). Transfected cells were identified by GFP expression. Scale bar 10 μm

Download (262KB)
4. Fig. 3. No change in mitochondrial membrane potential in VNA21 cells after knockdown of desmin (shRNA-des) and vimentin (shRNA-vim) by RNA interference. Control cells were transfected with plasmid pG-SHIN2-scr. Data are presented as mean values of mitochondrial fluorescence in the indicated number of cells with standard error as a percentage of the mean value in untransfected cells (-)

Download (71KB)
5. Fig. 4. Immunoblotting of cell homogenates of the original VNK21 (WT) cell line and the VNK21(Des-/-) and VNK21(Vim-/-) cell lines resulting from knockout of desmin and vimentin genes, respectively. Alpha-tubulin was used as a control

Download (51KB)
6. Fig. 5. PFs in cells of VNC21(Des-/-) (a, b) and VNC21(Vim-/-) (c, d) cell lines derived from knockout of desmin and vimentin genes, respectively, detected by immunofluorescence with antibodies against vimentin (a, c) or desmin (b, d). Scale of 10 μm

Download (163KB)
7. Fig. 6. Removal of vimentin (a, b) in VNC21(Des-/-) cells and desmin (c, d) in VNC21(Vim-/-) cells transfected with plasmids pG-SHIN2-vim and pG-SHIN2-des, respectively, by RNA interference. PFs were stained using antibodies against vimentin (b) and desmin (d). Transfected cells were identified by GFP expression (a, c, shown with arrows). Scale bar 10 μm

Download (186KB)
8. Fig. 7. Decreased mitochondrial membrane potential in VNA21(Vim-/-) cells (a) and in VNA21(Des-/-) cells (b) as a result of RNA interference of desmin or vimentin, respectively. Cells transfected with plasmid pG-SHIN2-scr were used as controls. Data are presented as mean values of mitochondrial fluorescence in the indicated number of cells with standard error as a percentage of the mean value in untransfected cells

Download (99KB)

Copyright (c) 2024 Russian Academy of Sciences