The Diversity of Circulating Tumor Markers: a Trend Towards a Multimodal Liquid Biopsy
- Authors: Kuligina E.S.1, Yanus G.A.1,2, Imyanitov E.N.1,2
-
Affiliations:
- Petrov National Medical Research Center of Oncology
- Saint Petersburg State Pediatric Medical University
- Issue: Vol 89, No 11 (2024)
- Pages: 1910-1923
- Section: Regular articles
- URL: https://rjeid.com/0320-9725/article/view/681422
- DOI: https://doi.org/10.31857/S0320972524110121
- EDN: https://elibrary.ru/IKGNCM
- ID: 681422
Cite item
Abstract
Over the past decade, liquid biopsy (LB) has become a routine diagnostic test essential for the treatment of malignant tumors of various localizations. Its capabilities include early diagnosis, molecular genotyping, prognosis, prediction, and monitoring of tumor response. Typically, liquid biopsy involves the extraction of a single type of tumor-derived molecules or cellular elements from blood and subsequent molecular analysis. These elements may include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), circulating RNA (ctRNA), or the contents of extracellular vesicles (exosomes). Despite the technical sophistication of molecular analysis methods for circulating biomarkers, this diagnostic approach has limited relevance. In a significant proportion of cancer patients (ranging from 10 to 50%, depending on the tumor type), none of these analytes can be detected and analyzed, despite the presence of large, progressing neoplastic foci in the body. It seems reasonable to posit that heterogeneous fractions of circulating tumor-specific biomarkers complement each other, thus, the simultaneous analysis of several fractions will not only increase the sensitivity of the method but also more accurately characterize and predict the clinical situation. This review examines the possibilities and advantages of applying a combined multiparametric approach to liquid biopsy, which involves testing multiple circulating analytes in a single blood sample.
Keywords
Full Text

About the authors
E. Sh. Kuligina
Petrov National Medical Research Center of Oncology
Author for correspondence.
Email: kate.kuligina@gmail.com
Russian Federation, 197758, Saint Petersburg
G. A. Yanus
Petrov National Medical Research Center of Oncology; Saint Petersburg State Pediatric Medical University
Email: kate.kuligina@gmail.com
Russian Federation, 197758, Saint Petersburg; 194100, Saint Petersburg
E. N. Imyanitov
Petrov National Medical Research Center of Oncology; Saint Petersburg State Pediatric Medical University
Email: kate.kuligina@gmail.com
Russian Federation, 197758, Saint Petersburg; 194100, Saint Petersburg
References
- Tran, D., Beeler, J. S., Liu, J., Wiley, B., Chan, I. C. C., Xin, Z., Kramer, M. H., Batchi-Bouyou, A. L., Zong, X., Walter, M. J., Petrone, G. E. M., Chlamydas, S., Ferraro, F., Oh, S. T., Link, D. C., Busby, B., Cao, Y., and Bolton, K. L. (2024) Plasma proteomic signature predicts myeloid neoplasm risk, Clin. Cancer. Res., 30, 3220-3228, https:// doi.org/10.1158/1078-0432.CCR-23-3468.
- Ding, Z., Wang, N., Ji, N., and Chen, Z. S. (2022) Proteomics technologies for cancer liquid biopsies, Mol. Cancer, 21, 53, https://doi.org/10.1186/s12943-022-01526-8.
- Hu, H., Song, H., Han, B., Zhao, H., and He, J. (2024) Tumor-educated platelet RNA and circulating free RNA: emerging liquid biopsy markers for different tumor types, Front. Biosci. (Landmark Ed), 29, 80, https:// doi.org/10.31083/j.fbl2902080.
- Kan, C. M., Pei, X. M., Yeung, M. H. Y., Jin, N., Ng, S. S. M., Tsang, H. F., Cho, W. C. S., Yim, A. K.-Y., Yu, A. C.-S., and Wong, S. C. C. (2023) Exploring the role of circulating cell-free RNA in the development of colorectal cancer, Int. J. Mol. Sci., 24, 11026, https://doi.org/10.3390/ijms241311026.
- Nicolò, E., Gianni, C., Pontolillo, L., Serafini, M. S., Munoz-Arcos, L. S., Andreopoulou, E., Curigliano, G., Reduzzi, C., and Cristofanilli, M. (2024) Circulating tumor cells: towards a comprehensive liquid biopsy approach in breast cancer, Transl. Breast Cancer Res., 5, 10, https://doi.org/10.21037/tbcr-23-55.
- Song, X., Hu, W., Yu, H., Wang, H., Zhao, Y., Korngold, R., and Zhao, Y. (2020) Existence of circulating mitochondria in human and animal peripheral blood, Int. J. Mol. Sci., 21, 2122, https://doi.org/10.3390/ijms21062122.
- Tivey, A., Church, M., Rothwell, D., Dive, C., Cook, N. (2022) Circulating tumour DNA – looking beyond the blood, Nat. Rev. Clin. Oncol., 19, 600-612, https://doi.org/10.1038/s41571-022-00660-y.
- Keup, C., Kimmig, R., and Kasimir-Bauer, S. (2022) Combinatorial power of cfDNA, CTCs and EVs in oncology, Diagnostics (Basel), 12, 870, https://doi.org/10.3390/diagnostics12040870.
- Hu, Z., Chen, H., Long, Y., Li, P., and Gu, Y. (2021) The main sources of circulating cell-free DNA: apoptosis, necrosis and active secretion, Crit. Rev. Oncol. Hematol., 157, 103166, https://doi.org/10.1016/j.critrevonc.2020.103166.
- Mouliere, F., Chandrananda, D., Piskorz, A. M., Moore, E. K., Morris, J., Ahlborn, L. B., Mair, R., Goranova, T., Marass, F., Heider, K., Wan, J. C. M., Supernat, A., et al. (2018) Enhanced detection of circulating tumor DNA by fragment size analysis, Sci. Transl. Med., 10, eaat4921, https://doi.org/10.1126/scitranslmed.aat4921.
- Fleischhacker, M., and Schmidt, B. (2007) Circulating nucleic acids (CNAs) and cancer – a survey, Biochim. Biophys. Acta, 1775, 181-232, https://doi.org/10.1016/j.bbcan.2006.10.001.
- Li, Y. Z., Kong, S. N., Liu, Y. P., Yang, Y., and Zhang, H. M. (2023) Can liquid biopsy based on ctDNA/cfDNA replace tissue biopsy for the precision treatment of EGFR-mutated NSCLC? J. Clin. Med., 12, 1438, https://doi.org/10.3390/jcm12041438.
- Peng, H., Pan, M., Zhou, Z., Chen, C., Xing, X., Cheng, S., Zhang, S., Zheng, H., and Qian, K. (2024) The impact of preanalytical variables on the analysis of cell-free DNA from blood and urine samples, Front. Cell Dev. Biol., 12, 1385041, https://doi.org/10.3389/fcell.2024.1385041.
- Diefenbach, R. J., Lee, J. H., Kefford, R. F., Rizos, H. (2018) Evaluation of commercial kits for purification of circulating free DNA, Cancer Genet., 228-229, 21-27, https://doi.org/10.1016/j.cancergen.2018.08.005.
- Ohmura, H., Hanamura, F., Okumura, Y., Ando, Y., Masuda, T., Mimori, K., Akashi, K., and Baba, E. (2024) Liquid biopsy for breast cancer and other solid tumors: a review of recent advances, Breast Cancer, Mar 16, https://doi.org/10.1007/s12282-024-01556-8.
- Reichert, Z. R., Morgan, T. M., Li, G., Castellanos, E., Snow, T., Dall’Olio, F. G., Madison, R. W., Fine, A. D., Oxnard, G. R., Graf, R. P., and Stover, D. G. (2023) Prognostic value of plasma circulating tumor DNA fraction across four common cancer types: a real-world outcomes study, Ann. Oncol., 34, 111-120, https://doi.org/10.1016/ j.annonc.2022.09.163.
- Tie, J., Cohen, J. D., Lo, S. N., Wang, Y., Li, L., Christie, M., Lee, M., Wong, R., Kosmider, S., Skinner, I., Wong, H. L., Lee, B., Burge, M. E., Yip, D., Karapetis, C. S., Price, T. J., Tebbutt, N. C., Haydon, A. M., Ptak, J., et al. (2021) Prognostic significance of postsurgery circulating tumor DNA in nonmetastatic colorectal cancer: individual patient pooled analysis of three cohort studies, Int. J. Cancer, 148, 1014-1026, https://doi.org/10.1002/ijc.33312.
- Zhang, X., Feng, R., Xu, Y., Yang, L., Xie, F., Yang, H., Wang, S., Peng, Y., Liu, M., Wang, C., and Wang, S. (2024) Baseline circulating tumor DNA predicts long-term survival outcomes for patients with early breast cancer, Gland Surgery, 13, 684-696, https://doi.org/10.21037/gs-24-115.
- Wang, R., Wang, B., Zhang, H., Liao, X., Shi, B., Zhou, Y., Zhou, C., Yan, Y., Zhang, W., Wang, K., Ge, G., Ren, Y., Tang, X., Gan, B., He, J., and Niu, L. (2024) Early evaluation of circulating tumor DNA as marker of therapeutic efficacy and prognosis in breast cancer patients during primary systemic therapy, Breast, 76, 103738, https://doi.org/10.1016/j.breast.2024.103738.
- Dobilas, A., Chen, Y., Brueffer, C., Leandersson, P., Saal, L. H., and Borgfeldt, C. (2023) Preoperative ctDNA levels are associated with poor overall survival in patients with ovarian cancer, Cancer Genomics Proteomics, 20 (6 suppl), 763-770, https://doi.org/10.21873/cgp.20423.
- Phallen, J., Sausen, M., Adleff, V., Leal, A., Hruban, C., et al. (2017) Direct detection of early-stage cancers using circulating tumor DNA, Sci. Transl. Med., 9, eaan2415, https://doi.org/10.1126/scitranslmed.aan2415.
- Moiseyenko, F. V., Kuligina, E. S., Zhabina, A. S., Belukhin, S. A., Laidus, T. A., et al. (2022) Changes in the concentration of EGFR-mutated plasma DNA in the first hours of targeted therapy allow the prediction of tumor response in patients with EGFR-driven lung cancer, Int. J. Clin. Oncol., 27, 850-862, https://doi.org/10.1007/ s10147-022-02128-6.
- Duffy, M. J. (2024) Circulating tumor DNA (ctDNA) as a biomarker for lung cancer: early detection, monitoring and therapy prediction, Tumour Biol., 46 (s1), S283-S295, https://doi.org/10.3233/TUB-220044.
- Thompson, J. C., Scholes, D. G., Carpenter, E. L., and Aggarwal, C. (2023) Molecular response assessment using circulating tumor DNA (ctDNA) in advanced solid tumors, Br. J. Cancer, 129, 1893-1902, https://doi.org/10.1038/s41416-023-02445-1.
- Kim, S. T., Cristescu, R., Bass, A. J., Kim, K. M., Odegaard, J. I., Kim, K., Liu, X. Q., Sher, X., Jung, H., Lee, M., Lee, S., Park, S. H., Park, J. O., Park, Y. S., Lim, H. Y., Lee, H., Choi, M., Talasaz, A., Kang, P. S., et al. (2018) Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer, Nat. Med., 24, 1449-1458, https://doi.org/10.1038/s41591-018-0101-z.
- Bar, Y., Keenan, J. C., Niemierko, A., Medford, A. J., Isakoff, S. J., Ellisen, L. W., Bardia, A., and Vidula, N. (2024) Genomic spectrum of actionable alterations in serial cell free DNA (cfDNA) analysis of patients with metastatic breast cancer, NPJ Breast Cancer, 10, 27, https://doi.org/10.1038/s41523-024-00633-7.
- Lee, K., Lee, J., Choi, J., Sim, S. H., Kim, J. E., Lee, K., Lee, J., Choi, J., Sim, S. H., Kim, J. E., Kim, M. H., Park, Y. H., Kim, J. H., Koh, S.-J., Park, K. H., Kang, M. J., Ahn, M. S., Lee, K. E., Kim, H.-J., Ahn, H. K., Kim, H. J., Park, K. U., and Park, I. H. (2023) Genomic analysis of plasma circulating tumor DNA in patients with heavily pretreated HER2+ metastatic breast cancer, Sci. Rep., 13, 1-10, https://doi.org/10.1038/s41598-023-35925-8.
- Visser, E., de Kock, R., Genet, S., van den Borne, B., Soud, M. Y., Soud, M. Y.-E., Belderbos, H., Stege, G., de Saegher, M., van ’t Westeinde, S., Broeren, M., Eduati, F., Deiman, B., and Scharnhorst, V. (2023) Up-front mutation detection in circulating tumor DNA by droplet digital PCR has added diagnostic value in lung cancer, Transl. Oncol., 27, 101589, https://doi.org/10.1016/j.tranon.2022.101589.
- Gilson, P. (2020) Enrichment and analysis of ctDNA, Recent results Cancer Res., 215, 181-211, https://doi.org/ 10.1007/978-3-030-26439-0_10.
- Ren, F., Fei, Q., Qiu, K., Zhang, Y., Zhang, H., and Sun, L. (2024) Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation, J. Exp. Clin. Cancer Res., 43, 96, https://doi.org/10.1186/s13046-024-03026-7.
- Sánchez-Martín, V., López-López, E., Reguero-Paredes, D., Godoy-Ortiz, A., Domínguez-Recio, M. E., et al. (2023) Comparative study of droplet-digital PCR and absolute Q digital PCR for ctDNA detection in early-stage breast cancer patients, Clin. Chim. Acta, 552, 117673, https://doi.org/10.1016/j.cca.2023.117673.
- Kuligina, E. S., Meerovich, R., Zagorodnev, K. A., Kholmatov, M. M., Sokolova, T. N., Laidus, T. A., Romanko, A. A., Martianov, A. S., Anisimova, M. O., Zaitseva, O. A., Yatsuk, O. S., Yanus, G. A., and Imyanitov, E. N. (2021) Content of circulating tumor DNA depends on the tumor type and the dynamics of tumor size but is not influenced significantly by physical exercise, time of the day or recent meal, Cancer Genet., 256-257, 165-178, https:// doi.org/10.1016/j.cancergen.2021.05.014.
- Iam, W. T., Mackay, M., Ben-Shachar, R., Drews, J., Manghnani, K., Hockenberry, A. J., Cristofanilli, M., Nimeiri, H., Guinney, J., and Benson, A. B. (2024) Concurrent tissue and circulating tumor DNA molecular profiling to detect guideline-based targeted mutations in a multicancer cohort, JAMA Netw. Open, 7, e2351700, https:// doi.org/10.1001/jamanetworkopen.2023.51700.
- Zhang, Y., Yao, Y., Xu, Y., Li, L., Gong, Y., et al. (2021) Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients, Nat. Commun., 12, 11, https://doi.org/10.1038/s41467-020-20162-8.
- Liu, J., Dai, L., Wang, Q., Li, C., Liu, Z., et al. (2024) Multimodal analysis of cfDNA methylomes for early detecting esophageal squamous cell carcinoma and precancerous lesions, Nat. Commun., 15, 3700, https://doi.org/10.1038/s41467-024-47886-1.
- Visal, T. H., Den Hollander, P., Cristofanilli, M., and Mani, S. A. (2022) Circulating tumour cells in the -omics era: how far are we from achieving the ‘singularity’? Br. J. Cancer, 127, 173-184, https://doi.org/10.1038/s41416-022-01768-9.
- Zhou, J., Vorobyeva, A., Luan, Q., and Papautsky, I. (2023) Single cell analysis of inertial migration by circulating tumor cells and clusters, Micromachines (Basel), 14, 787, https://doi.org/10.3390/mi14040787.
- Lawrence, R., Watters, M., Davies, C. R., Pantel, K., and Lu, Y. J. (2023) Circulating tumour cells for early detection of clinically relevant cancer, Nat. Rev. Clin. Oncol., 20, 487-500, https://doi.org/10.1038/s41571-023-00781-y.
- Yadav, A., Kumar, A., and Siddiqui, M. H. (2021) Detection of circulating tumour cells in colorectal cancer: emerging techniques and clinical implications, World J. Clin. Oncol., 12, 1169-1181, https://doi.org/10.5306/ wjco.v12.i12.1169.
- Srivastava, S., Koay, E. J., Borowsky, A. D., De Marzo, A. M., Ghosh, S., Wagner, P. D., and Kramer, B. S. (2019) Cancer overdiagnosis: a biological challenge and clinical dilemma, Nat. Rev. Cancer, 19, 349-358, https://doi.org/ 10.1038/s41568-019-0142-8.
- Renzi, G. D., Marco, G. D., Meo, M. D., Rosso, E. D., Gazzaniga, P., and Nicolazzo, C. (2022) In vitro cultures of circulating tumor cells: a potential tool to unravel drug sensitivity, Cancer Drug Resist., 5, 245-260, https:// doi.org/10.20517/cdr.2021.121.
- Kahounová, Z., Pícková, M., Drápela, S., Bouchal, J., Szczyrbová, E., et al. (2023) Circulating tumor cell-derived preclinical models: current status and future perspectives, Cell Death Dis., 14, 530, https://doi.org/10.1038/ s41419-023-06059-6.
- Duffy, M. J., McDermott, E. W., and Crown, J. (2018) Blood-based biomarkers in breast cancer: from proteins to circulating tumor cells to circulating tumor DNA, Tumour Biol., 40, 1010428318776169, https://doi.org/ 10.1177/1010428318776169.
- Chai, S., Naghdloo, A., Pore, M., Singh, M., Matsumoto, N., et al. (2022) Identification of epithelial and mesenchymal circulating tumor cells in clonal lineage of an aggressive prostate cancer case, Npj Precision Oncol., 6, 1-11, https://doi.org/10.1038/s41698-022-00289-1.
- Yokobori, T., Iinuma, H., Shimamura, T., Imoto, S., Sugimachi, K., et al. (2013) Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis, Cancer Res., 73, 2059-2069, https://doi.org/10.1158/0008-5472.CAN-12-0326.
- Papadaki, M. A., Stoupis, G., Theodoropoulos, P. A., Mavroudis, D., Georgoulias, V., and Agelaki, S. (2019) Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer, Mol. Cancer Ther., 18, 437-447, https://doi.org/10.1158/ 1535-7163.MCT-18-0584.
- Shaw, J. A., Guttery, D. S., Hills, A., Fernandez-Garcia, D., Page, K., et al. (2017) Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high circulating tumor cell counts, Clin. Cancer Res., 23, 88-96, https://doi.org/10.1158/1078-0432.CCR-16-0825.
- Wang, X., Wang, L., Lin, H., Zhu, Y., Huang, D., et al. (2024) Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy, Front. Oncol., 14, 1303335, https://doi.org/10.3389/fonc.2024.1303335.
- Kapeleris, J., Müller Bark, J., Ranjit, S., Irwin, D., Hartel, G., et al. (2022) Prognostic value of integrating circulating tumour cells and cell-free DNA in non-small cell lung cancer, Heliyon, 8, e09971, https://doi.org/10.1016/ j.heliyon.2022.e09971.
- Chalfin, H. J., Glavaris, S. A., Gorin, M. A., Kates, M. R., Fong, M. H., et al. (2021) Circulating tumor cell and circulating tumor DNA assays reveal complementary information for patients with metastatic urothelial cancer, Eur. Urol. Oncol., 4, 310-314, https://doi.org/10.1016/j.euo.2019.08.004.
- Ye, Z., Wang, C., Wan, S., Mu, Z., Zhang, Z., et al. (2019) Association of clinical outcomes in metastatic breast cancer patients with circulating tumour cell and circulating cell-free DNA, Eur. J. Cancer, 106, 133-143, https://doi.org/10.1016/j.ejca.2018.10.012.
- Gerratana, L., Davis, A. A., Zhang, Q., Basile, D., Rossi, G., et al. (2021) Longitudinal dynamics of circulating tumor cells and circulating tumor DNA for treatment monitoring in metastatic breast cancer, JCO Precis. Oncol., 5, 943-952, 10.1200/PO.20.0034.
- Bortolini Silveira, A., Bidard, F., Tanguy, M., Girard, E., Trédan, O., et al. (2021) Multimodal liquid biopsy for early monitoring and outcome prediction of chemotherapy in metastatic breast cancer, NPJ Breast Cancer, 7, 1-9, https://doi.org/10.1038/s41523-021-00319-4.
- Vaiaki, E. M., and Falasca, M. (2024) Comparative analysis of the minimal information for studies of extracellular vesicles guidelines: advancements and implications for extracellular vesicle research, Semin. Cancer Biol., 101, 12-24, https://doi.org/10.1016/j.semcancer.2024.04.002.
- Goberdhan, D. C. I. (2023) Large tumour-derived extracellular vesicles as prognostic indicators of metastatic cancer patient survival, Br. J. Cancer, 128, 471-473, https://doi.org/10.1038/s41416-022-02055-3.
- Doyle, L. M., and Wang, M. Z. (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis, Cells, 8, 727, https://doi.org/10.3390/cells8070727.
- Zhang, F., Guo, J., Zhang, Z., Qian, Y., Wang, G., et al. (2022) Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy, Cancer Lett., 526, 29-40, https://doi.org/10.1016/j.canlet.2021.11.015.
- Huang, X., Yuan, T., Tschannen, M., Sun, Z., Jacob, H., et al. (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing, BMC Genom., 14, 319, https://doi.org/10.1186/1471-2164-14-319.
- Keup, C., Mach, P., Aktas, B., Tewes, M., Kolberg, H. C., Hauch, S., Sprenger-Haussels, M., Kimmig, R., and Kasimir-Bauer, S. (2018) RNA profiles of circulating tumor cells and extracellular vesicles for therapy stratification of metastatic breast cancer patients, Clin. Chem., 64, 1054-1062, https://doi.org/10.1373/clinchem.2017.283531.
- Ciravolo, V., Huber, V., Ghedini, G. C., Venturelli, E., Bianchi, F., et al. (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy, J. Cell Physiol., 227, 658-667, https://doi.org/10.1002/jcp.22773.
- Chen, X., Liu, J., Zhang, Q., Liu, B., Cheng, Y., et al. (2020) Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3, J. Exp. Clin. Cancer Res., 39, 65, https://doi.org/10.1186/s13046-019-1507-2.
- Hsu, X. R., Wu, J. E., Wu, Y. Y., Hsiao, S. Y., Liang, J. L., et al. (2023) Exosomal long noncoding RNA MLETA1 promotes tumor progression and metastasis by regulating the miR-186-5p/EGFR and miR-497-5p/IGF1R axes in non-small cell lung cancer, J. Exp. Clin. Cancer Res., 42, 283, https://doi.org/10.1186/s13046-023-02859-y.
- Yan, Y., Du, C., Duan, X., Yao, X., Wan, J., et al. (2022) Inhibiting collagen I production and tumor cell colonization in the lung via miR-29a-3p loading of exosome-/liposome-based nanovesicles, Acta Pharm. Sin. B, 12, 939-951, https://doi.org/10.1016/j.apsb.2021.08.011.
- Chen, S. W., Zhu, S. Q., Pei, X., Qiu, B. Q., Xiong, D., et al. (2021) Cancer cell-derived exosomal circUSP7 induces CD8(+) T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC, Mol. Cancer, 20, 144, https://doi.org/10.1186/s12943-021-01448-x.
- Wu, Y., Fu, H., Hao, J., Yang, Z., Qiao, X., et al. (2024) Tumor‐derived exosomal PD-L1: A new perspective in PD-1/PD-L1 therapy for lung cancer, Front. Immunol., 15, 1342728, https://doi.org/10.3389/fimmu.2024.1342728.
- Nanou, A., Zeune, L. L., Bidard, F. C., Pierga, J. Y., and Terstappen, L. W. M. M. (2020) HER2 expression on tumor-derived extracellular vesicles and circulating tumor cells in metastatic breast cancer, Breast Cancer Res., 22, 86, https://doi.org/10.1186/s13058-020-01323-5.
- Grigoryeva, E. S., Tashireva, L. A., Savelieva, O. E., Zavyalova, M. V., Popova, N. O., et al. (2023) The association of integrins β3, β4, and αVβ5 on exosomes, CTCs and tumor cells with localization of distant metastasis in breast cancer patients, Int. J. Mol. Sci., 24, 2929, https://doi.org/10.3390/ijms24032929.
- Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., et al. (2015) Tumour exosome integrins determine organotropic metastasis, Nature, 527, 329-335, https://doi.org/10.1038/nature15756.
- Heinemann, M. L., Ilmer, M., Silva, L. P., Hawke, D. H., Recio, A., et al. (2014) Benchtop isolation and characterization of functional exosomes by sequential filtration, J. Chromatogr. A, 1371, 125-135, https://doi.org/10.1016/ j.chroma.2014.10.026.
- Kalluri, R., and LeBleu, V. S. (2020) The biology, function, and biomedical applications of exosomes, Science, 367, eaau6977, https://doi.org/10.1126/science.aau6977.
- Schwarzenbach, H. (2024) Potential of exosomes as therapeutics and therapy targets in cancer patients, Int. J. Transl. Med., 4, 247-261, https://doi.org/10.3390/ijtm4020015.
- Scher, H. I., Morris, M. J., Larson, S., and Heller, G. (2013) Validation and clinical utility of prostate cancer biomarkers, Nat. Rev. Clin. Oncol., 10, 225-234, https://doi.org/10.1038/nrclinonc.2013.30.
- Lin, K., Lipsitz, R., Miller, T., and Janakiraman, S. (2008) Benefits and harms of prostate-specific antigen screening for prostate cancer: an evidence update for the U.S. preventive services task force, Ann. Intern. Med., 149, 192, https://doi.org/10.7326/0003-4819-149-3-200808050-00009.
- Lumbreras, B., Parker, L. A., Caballero-Romeu, J. P., Gómez-Pérez, L., Puig-García, M., et al. (2022) Variables associated with false-positive PSA results: a cohort study with real-world data, Cancers (Basel), 15, 261, https://doi.org/10.3390/cancers15010261.
- Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., et al. (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test, Science, 359, 926-930, https://doi.org/10.1126/science.aar3247.
- Lennon, A. M., Buchanan, A. H., Kinde, I., Warren, A., Honushefsky, A., et al. (2020) Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention, Science, 369, eabb9601, https://doi.org/10.1126/science.abb9601.
- Ben-Ami, R., Wang, Q. L., Zhang, J., Supplee, J. G., Fahrmann, J. F., Lehmann-Werman, R., Brais, L. K., Nowak, J., Yuan, C., Loftus, M., Babic, A., Irajizad, E., Davidi, T., Zick, A., Hubert, A., Neiman, D., Piyanzin, S., Gal-Rosenberg, O., Horn, A., et al. (2024) Protein biomarkers and alternatively methylated cell-free DNA detect early stage pancreatic cancer, Gut, 73, 639-648, https://doi.org/10.1136/gutjnl-2023-331074.
- Xing, X., Cai, L., Ouyang, J., Wang, F., Li, Z., Liu, M., Wang, Y., Zhou, Y., Hu, E., Huang, C., Wu, L., Liu, J., and Liu, X. (2023) Proteomics-driven noninvasive screening of circulating serum protein panels for the early diagnosis of hepatocellular carcinoma, Nat. Commun., 14, 8392, https://doi.org/10.1038/s41467-023-44255-2.
- Anastasi, E., Farina, A., Granato, T., Colaiacovo, F., Pucci, B., et al. (2023) Recent insight about HE4 role in ovarian cancer oncogenesis, Int. J. Mol. Sci., 24, 10479, https://doi.org/10.3390/ijms241310479.
- Boylan, K. L. M., Petersen, A., Starr, T. K., Pu, X., Geller, M. A., Bast, R. C., Lu, K. H., Cavallaro, U., Connolly, D. C., Elias, K. M., Cramer, D. W., Pejovic, T., and Skubitz, A. P. N. (2022) Development of a multiprotein classifier for the detection of early stage ovarian cancer, Cancers (Basel), 14, 3077, https://doi.org/10.3390/cancers14133077.
- Huang, H., Yang, Y., Zhu, Y., Chen, H., Yang, Y., et al. (2022) Blood protein biomarkers in lung cancer, Cancer Lett., 551, 215886, https://doi.org/10.1016/j.canlet.2022.215886.
- Fahrmann, J. F., Marsh, T., Irajizad, E., Patel, N., Murage, E., et al. (2022) Blood-based biomarker panel for personalized lung cancer risk assessment, J. Clin. Oncol., 40, 876-883, https://doi.org/10.1200/JCO.21.01460.
- Isgrò, M. A., Bottoni, P., and Scatena, R. (2015) Neuron-specific enolase as a biomarker: biochemical and clinical aspects, Adv. Exp. Med. Biol., 867, 125-143, https://doi.org/10.1007/978-94-017-7215-0_9.
- Filella, X., Rodríguez-Garcia, M., and Fernández-Galán, E. (2022) Clinical usefulness of circulating tumor markers, Clin. Chem. Lab. Med., 61, 895-905, https://doi.org/10.1515/cclm-2022-1090.
- Liu, Y., Hatano, K., and Nonomura, N. (2024) Liquid biomarkers in prostate cancer diagnosis: current status and emerging prospects, World J. Mens Health, 42, e45, https://doi.org/10.5534/wjmh.230386.
- Ahn, H. S., Ho, J. Y., Yu, J., Yeom, J., Lee, S., et al. (2021) Plasma protein biomarkers associated with higher ovarian cancer risk in BRCA1/2 carriers, Cancers (Basel), 13, 2300, https://doi.org/10.3390/cancers13102300.
- Schillebeeckx, E., van Meerbeeck, J. P., and Lamote, K. (2021) Clinical utility of diagnostic biomarkers in malignant pleural mesothelioma: a systematic review and meta-analysis, Eur. Respir. Rev., 30, 210057, https:// doi.org/10.1183/16000617.0057-2021.
- Nagpal, M., Singh, S., Singh, P., Chauhan, P., and Zaidi, M. A. (2016) Tumor markers: a diagnostic tool, Natl. J. Maxillofac. Surg., 7, 17-20, https://doi.org/10.4103/0975-5950.196135.
- Sok, C. P., Polireddy, K., and Kooby, D. A. (2024) Molecular pathology and protein markers for pancreatic cancer: relevance in staging, in adjuvant therapy, in determination of minimal residual disease, and follow-up, Hepatobiliary Surg. Nutr., 13, 56-70, https://doi.org/10.21037/hbsn-22-628.
- Charkhchi, P., Cybulski, C., Gronwald, J., Wong, F. O., Narod, S. A., and Akbari, M. R. (2020) CA125 and ovarian cancer: a comprehensive review, Cancers (Basel), 12, 3730, https://doi.org/10.3390/cancers12123730.
- Sahu, S. A., and Shrivastava, D. (2023) A comprehensive review of screening methods for ovarian masses: towards earlier detection, Cureus, 15, e48534, https://doi.org/10.7759/cureus.48534.
- Dochez, V., Caillon, H., Vaucel, E., Dimet, J., Winer, N., and Ducarme, G. (2019) Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review, J. Ovarian Res., 12, 28, https://doi.org/10.1186/s13048-019-0503-7.
- Moss, E. L., Hollingworth, J., and Reynolds, T. M. (2005) The role of CA125 in clinical practice, J. Clin. Pathol., 58, 308-312, https://doi.org/10.1136/jcp.2004.018077.
- Landegren, U., and Hammond, M. (2021) Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations, Mol. Oncol., 15, 1715-1726, https://doi.org/10.1002/1878-0261.12809.
- Felekkis, K., and Papaneophytou, C. (2024) The circulating biomarkers league: combining miRNAs with cell-free DNAs and proteins, Int. J. Mol. Sci., 25, 3403, https://doi.org/10.3390/ijms25063403.
- Di Sario, G., Rossella, V., Famulari, E. S., Maurizio, A., Lazarevic, D., Giannese, F., and Felici, C. (2023) Enhancing clinical potential of liquid biopsy through a multi-omic approach: a systematic review, Front. Genet., 14, 1152470, https://doi.org/10.3389/fgene.2023.1152470.
- Schneegans, S., Lück, L., Besler, K., Bluhm, L., Stadler, J. C., et al. (2020) Pre-analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients, Mol. Oncol., 14, 1001-1015, 10.1002/1878-0261.12669.
- Keup, C., Suryaprakash, V., Hauch, S., Storbeck, M., Hahn, P., Sprenger-Haussels, M., Kolberg, H.-C., Tewes, M., Hoffmann, O., Kimmig, R., and Kasimir-Bauer, S. (2021) Integrative statistical analyses of multiple liquid biopsy analytes in metastatic breast cancer, Genome Med., 13, 85, https://doi.org/10.1186/s13073-021-00902-1.
- Keup, C., Suryaprakash, V., Storbeck, M., Hoffmann, O., Kimmig, R., and Kasimir-Bauer, S. (2021) Longitudinal multi-parametric liquid biopsy approach identifies unique features of circulating tumor cell, extracellular vesicle, and cell-free DNA characterization for disease monitoring in metastatic breast cancer patients, Cells, 10, 212, https://doi.org/10.3390/cells10020212.
- Connal, S., Cameron, J. M., Sala, A., Brennan, P. M., Palmer, D. S., et al. (2023) Liquid biopsies: the future of cancer early detection, J. Transl. Med., 21, 118, https://doi.org/10.1186/s12967-023-03960-8.
Supplementary files
