Extracellular Vesicles as Promising Markers of Addictive Disorders
- Authors: Severtsev V.V.1,2, Pavkina M.A.1, Ivanets N.N.1, Vinnikova M.A.1,3, Yakovlev A.A.4,5
-
Affiliations:
- Sechenov First Moscow State Medical University
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency
- Moscow Scientific and Practical Center of Narcology of the Moscow Healthcare Department
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
- Research and Clinical Center for Neuropsychiatry of the Moscow Healthcare Department
- Issue: Vol 89, No 11 (2024)
- Pages: 1893-1909
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/681421
- DOI: https://doi.org/10.31857/S0320972524110115
- EDN: https://elibrary.ru/IKHPDY
- ID: 681421
Cite item
Abstract
The studying the role and condition of small extracellular vesicles (sEV) in mental and addictive disorders is an extremely promising area. SEV contain proteins on the membrane that protect against destruction by their own immunity, and due to their size, they are able to cross the blood-brain barrier. These properties make it possible to consider sEV as potential biomarkers reflecting the processes occurring in the brain, and at the same time available for study in peripheral blood samples. Studies have shown that the amount, biogenesis and contents of explosives change significantly when exposed to psychoactive substances both in vitro and in vivo. The results of the analysis of modern literature demonstrate the presence of numerous potential markers of addictive pathology among the loads carried by sEV, nevertheless, the real diagnostic significance of each of them requires to be studied. Many data indicate the effect of psychoactive substances on GTPases of the Rab family, Toll-like receptors, the complement system and cytokines. Also, in several studies, sex differences in sEV changes were found in response to substance exposure. Most studies indicate the involvement of sEV in the regulation of neuroinflammatory processes, interaction between glial cells and neurons, as well as between peripheral cells and cells of the central nervous system. The authors of the review formulated a hypothesis about the presence of two mechanisms-stages in which sEV is involved: “fast” – in response to the effects of substances, providing neuroplasticity, and “slow” – the result of impaired biogenesis of sEV and the appearance of aberrant vesicle variants.
Full Text

About the authors
V. V. Severtsev
Sechenov First Moscow State Medical University; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency
Author for correspondence.
Email: severtsevmed@gmail.com
Russian Federation, 119048, Moscow; 143007, Moscow
M. A. Pavkina
Sechenov First Moscow State Medical University
Email: severtsevmed@gmail.com
Russian Federation, 119048, Moscow
N. N. Ivanets
Sechenov First Moscow State Medical University
Email: severtsevmed@gmail.com
Russian Federation, 119048, Moscow
M. A. Vinnikova
Sechenov First Moscow State Medical University; Moscow Scientific and Practical Center of Narcology of the Moscow Healthcare Department
Email: severtsevmed@gmail.com
Russian Federation, 119048, Moscow; 109390, Moscow
A. A. Yakovlev
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences; Research and Clinical Center for Neuropsychiatry of the Moscow Healthcare Department
Email: severtsevmed@gmail.com
Russian Federation, 117485, Moscow; 115419, Moscow
References
- УНП ООН (2023) Всемирный доклад о наркотиках за 2023 год, URL: https://www.unodc.org/res/WDR-2023/WDR23_ExSum_Russian.pdf.
- Киржанова В. В., Григорова Н. И., Бобков Е. Н., Киржанов В. Н., Сидорюк О. В. (2022) Деятельность наркологической службы Российской Федерации в 2019-2020 года. Аналитический обзор, ФГБУ «НМИЦ ПН им. В.П. Сербского» Минздрава России, Москва.
- Иванец Н. Н., Винникова М. А. (2024) Наркология: национальное руководство, 3-е изд., ГЭОТАР-Медиа, Москва.
- Hauck, C., Cook, B., and Ellrott, T. (2020) Food addiction, eating addiction and eating disorders, Proc. Nutr. Soc., 79, 103-112, https://doi.org/10.1017/S0029665119001162.
- Kalluri, R., and LeBleu, V. S. (2020) The biology, function, and biomedical applications of exosomes, Science, 367, https://doi.org/10.1126/science.aau6977.
- Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., Beckham, C., Bedina Zavec, A., Benmoussa, A., Berardi, A. C., Bergese, P., Bielska, E., et al. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines, J. Extracell. Vesicles, 7, 1535750, https://doi.org/10.1080/20013078.2018.1535750.
- Kamerkar, S., Lebleu, V. S., Sugimoto, H., Yang, S., Ruivo, C. F., Melo, S. A., Lee, J. J., and Kalluri, R. (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer, Nature, 546, 498-503, https:// doi.org/10.1038/nature22341.
- Khaspekov, L. G., and Yakovlev, A. A. (2023) Prospects for the use of small extracellular vesicles as a transport vehicle through the blood-brain barrier, Neurochem. J., 17, 1-9, https://doi.org/10.1134/s1819712423010087.
- Van Niel, G., Carter, D. R. F., Clayton, A., Lambert, D. W., Raposo, G., and Vader, P. (2022) Challenges and directions in studying cell-cell communication by extracellular vesicles, Nat. Rev. Mol. Cell Biol., 23, 369-382, https://doi.org/10.1038/s41580-022-00460-3.
- Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C. F., Schauer, K., Hume, A. N., Freitas, R. P., Goud, B., Benaroch, P., Hacohen, N., Fukuda, M., Desnos, C., Seabra, M. C., Darchen, F., Amigorena, S., Moita, L. F., and Thery, C. (2009) Rab27a and Rab27b control different steps of the exosome secretion pathway, Nat. Cell Biol., 12, 19-30, https://doi.org/10.1038/ncb2000.
- Vanlandingham, P. A., and Ceresa, B. P. (2009) Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration, J. Biol. Chem., 284, 12110-12124, https://doi.org/10.1074/ jbc.M809277200.
- Stenmark, H. (2009) Rab GTPases as coordinators of vesicle traffic, Nat. Rev. Mol. Cell Biol., 10, 513-525, https://doi.org/10.1038/nrm2728.
- Gurunathan, S., Kang, M.-H., Qasim, M., Khan, K., and Kim, J.-H. (2021) Biogenesis, membrane trafficking, functions, and next generation nanotherapeutics medicine of extracellular vesicles, Int. J. Nanomed., 16, 3357-3383, https://doi.org/10.2147/IJN.S310357.
- Henne, W. M., Buchkovich, N. J., and Emr, S. D. (2011) The ESCRT pathway, Dev. Cell, 21, 77-91, https:// doi.org/10.1016/j.devcel.2011.05.015.
- Turchinets, A. M., and Yakovlev, A. A. (2023) Structural determinants of small extracellular vesicles (exosomes) and their role in biological functions, Neurochem. J., 17, 547-559, https://doi.org/10.1134/s1819712423040220.
- Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., and David, G. (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes, Nat. Cell Biol., 14, 677-685, https://doi.org/10.1038/ncb2502.
- Van Niel, G., Charrin, S., Simoes, S., Romao, M., Rochin, L., Saftig, P., Marks, M. S., Rubinstein, E., and Raposo, G. (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis, Dev. Cell, 21, 708-721, https://doi.org/10.1016/j.devcel.2011.08.019.
- Thom, S. R., Bhopale, V. M., Yu, K., Huang, W., Kane, M. A., and Margolis, D. J. (2017) Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability, J. Biol. Chem., 292, 18312-18324, https://doi.org/10.1074/jbc.m117.802629.
- Menck, K., Sönmezer, C., Worst, T. S., Schulz, M., Dihazi, G. H., Streit, F., Erdmann, G., Kling, S., Boutros, M., Binder, C., and Gross, J. C. (2017) Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane, J. Extracell. Vesicles, 6, 1378056, https://doi.org/10.1080/20013078.2017.1378056.
- Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., and Simons, M. (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, 319, 1244-1247, https://doi.org/10.1126/science.1153124.
- Anand, S., Foot, N., Ang, C., Gembus, K. M., Keerthikumar, S., Adda, C. G., Mathivanan, S., and Kumar, S. (2018) Arrestin-domain containing protein 1 (Arrdc1) regulates the protein cargo and release of extracellular vesicles, Proteomics, 18, e1800266, https://doi.org/10.1002/pmic.201800266.
- Buschow, S. I., Liefhebber, J. M. P., Wubbolts, R., and Stoorvogel, W. (2005) Exosomes contain ubiquitinated proteins, Blood Cells Mol. Dis., 35, 398-403, https://doi.org/10.1016/j.bcmd.2005.08.005.
- Stahl, P. D., and Raposo, G. (2019) Extracellular vesicles: exosomes and microvesicles, integrators of homeostasis, Physiology, 34, 169-177, https://doi.org/10.1152/physiol.00045.2018.
- Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., and Geuze, H. J. (1996) B lymphocytes secrete antigen-presenting vesicles, J. Exp. Med., 183, 1161-1172, https://doi.org/10.1084/jem.183.3.1161.
- Yakovlev, A. A. (2023) Neuronal exosomes as a new signaling system, Biochemistry (Moscow), 88, 457-465, https://doi.org/10.1134/s0006297923040028.
- Frühbeis, C., Kuo-Elsner, W. P., Müller, C., Barth, K., Peris, L., Tenzer, S., Möbius, W., Werner, H. B., Nave, K.-A., Fröhlich, D., and Krämer-Albers, E.-M. (2020) Oligodendrocytes support axonal transport and maintenance via exosome secretion, PLOS Biol., 18, e3000621, https://doi.org/10.1371/journal.pbio.3000621.
- Chaudhuri, A. D., Dasgheyb, R. M., DeVine, L. R., Bi, H., Cole, R. N., and Haughey, N. J. (2019) Stimulus-dependent modifications in astrocyte-derived extracellular vesicle cargo regulate neuronal excitability, Glia, 68, 128-144, https://doi.org/10.1002/glia.23708.
- Chun, C., Smith, A. S. T., Kim, H., Kamenz, D. S., Lee, J. H., Lee, J. B., Mack, D. L., Bothwell, M., Clelland, C. D., and Kim, D.-H. (2021) Astrocyte-derived extracellular vesicles enhance the survival and electrophysiological function of human cortical neurons in vitro, Biomaterials, 271, 120700, https://doi.org/10.1016/j.biomaterials. 2021.120700.
- Patel, M. R., and Weaver, A. M. (2021) Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling, Cell Rep., 34, 108829, https://doi.org/10.1016/j.celrep. 2021.108829.
- Lachenal, G., Pernet-Gallay, K., Chivet, M., Hemming, F. J., Belly, A., Bodon, G., Blot, B., Haase, G., Goldberg, Y., and Sadoul, R. (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity, Mol. Cell. Neurosci., 46, 409-418, https://doi.org/10.1016/j.mcn.2010.11.004.
- Schiera, G., Proia, P., Alberti, C., Mineo, M., Savettieri, G., and Di Liegro, I. (2007) Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles, J. Cell. Mol. Med., 11, 1384-1394, https://doi.org/10.1111/J.1582-4934.2007.00100.X.
- Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X., and Lo, E. H. (2016) Transfer of mitochondria from astrocytes to neurons after stroke, Nature, 535, 551-555, https://doi.org/10.1038/nature18928.
- Krämer-Albers, E., Bretz, N., Tenzer, S., Winterstein, C., Möbius, W., Berger, H., Nave, K., Schild, H., and Trotter, J. (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl., 1, 1446-1461, https://doi.org/10.1002/prca.200700522.
- Yakovlev, A. A. (2022) Neuroprotective effects of astrocyte extracellular vesicles in stroke, Neurochem. J., 16, 121-129, https://doi.org/10.1134/s1819712422020143.
- Druzhkova, T. A., and Yakovlev, A. A. (2018) Exosome drug delivery through the blood-brain barrier: experimental approaches and potential applications, Neurochem. J., 12, 195-204, https://doi.org/10.1134/ s1819712418030030.
- Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M., Dumont-Cole, V. D., Kramer, K., et al. (2015) Tumour exosome integrins determine organotropic metastasis, Nature, 527, 329-335, https://doi.org/10.1038/ nature15756.
- Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., Bissell, M. J., Cox, T. R., Giaccia, A. J., Erler, J. T., Hiratsuka, S., Ghajar, C. M., and Lyden, D. (2017) Pre-metastatic niches: organ-specific homes for metastases, Nat. Rev. Cancer, 17, 302-317, https://doi.org/10.1038/nrc.2017.6.
- Onkar, A., Khan, F., Goenka, A., Rajendran, R. L., Dmello, C., Hong, C. M., Mubin, N., Gangadaran, P., and Ahn, B.-C. (2024) Smart nanoscale extracellular vesicles in the brain: unveiling their biology, diagnostic potential, and therapeutic applications, ACS Appl. Mater. Interf., 16, 6709-6742, https://doi.org/10.1021/acsami.3c16839.
- Basalova, N. A., Dzhauari, S. S., Yurshev, Yu. A., Primak, A. L., Efimenko, A. Yu., Tkachuk, V. A., and Karagyaur, M. N. (2023) State-of-the-art: the use of extracellular vesicles and preparations based on them for neuroprotection and stimulation of brain tissue regeneration after injury, Neurochem. J., 17, 560-570, https://doi.org/10.1134/s1819712423040074.
- Перегуд Д. И., Баронец В. Ю., Теребилина Н. Н., Гуляева Н. В. (2023) Роль BDNF в нейропластичности при формировании зависимости от алкоголя, Биохимия, 88, 491-507, https://doi.org/10.31857/ S0320972523030090.
- Speranza, L., di Porzio, U., Viggiano, D., de Donato, A., and Volpicelli, F. (2021) Dopamine: the neuromodulator of long-term synaptic plasticity, reward and movement control, Cells, 10, 735, https://doi.org/10.3390/ cells10040735.
- Hu, G., Liao, K., Niu, F., Yang, L., Dallon, B. W., Callen, S., Tian, C., Shu, J., Cui, J., Sun, Z., Lyubchenko, Y. L., Ka, M., Chen, X.-M., and Buch, S. (2018) Astrocyte EV-induced lincRNA-Cox2 regulates microglial phagocytosis: implications for morphine-mediated neurodegeneration, Mol. Ther. Nucleic Acids, 13, 450-463, https:// doi.org/10.1016/j.omtn.2018.09.019.
- Chivero, E. T., Dagur, R. S., Peeples, E. S., Sil, S., Liao, K., Ma, R., Chen, L., Gurumurthy, C. B., Buch, S., and Hu, G. (2021) Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders, Cell. Mol. Life Sci., 78, 4849-4865, https://doi.org/10.1007/s00018-021-03824-8.
- Dzyubenko, E., and Hermann, D. M. (2023) Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system, Semin. Immunopathol., 45, 377-387, https://doi.org/10.1007/s00281023-00989-1.
- Kim, S., and Son, Y. (2021) Astrocytes stimulate microglial proliferation and M2 polarization in vitro through crosstalk between astrocytes and microglia, Int. J. Mol. Sci., 22, 8800, https://doi.org/10.3390/ijms22168800.
- Assis-de-Lemos, G., Monteiro, J., Oliveira-Valença, V. M., Melo, G. A., Reis, R. A. de M., Rehen, S. K., Silveira, M. S., and Galina, A. (2021) Dopamine signaling impairs ROS modulation by mitochondrial hexokinase in human neural progenitor cells, Biosci. Rep., 41, BSR20211191, https://doi.org/10.1042/BSR20211191.
- Hatoum, A. S., Colbert, S. M. C., Johnson, E. C., Huggett, S. B., Deak, J. D., Pathak, G. A., Jennings, M. V., Paul, S. E., Karcher, N. R., Hansen, I., Baranger, D. A. A., Edwards, A., Grotzinger, A. D., Substance Use Disorder Working Group of the Psychiatric Genomics Consortium, Adkins, D. E., Adkins, A. E., Alanne-Kinnunen, M., Alexander, J. C., Aliev, F., Bacanu, S.-A., Batzler, A., Biernacka, J. M., Bierut, L. J., Bigdeli, T. B., Blagonravova, A., et al. (2023) Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders, Nat. Mental Health, 1, 210-223, https://doi.org/10.1038/s44220023-00034-y.
- Abels, E. R., and Breakefield, X. O. (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake, Cell. Mol. Neurobiol., 36, 301-312, https://doi.org/10.1007/s10571-016-0366-z.
- Shahjin, F., Guda, R. S., Schaal, V. L., Odegaard, K., Clark, A., Gowen, A., Xiao, P., Lisco, S. J., Pendyala, G., and Yelamanchili, S. V. (2019) Brain-derived extracellular vesicle microRNA signatures associated with in utero and postnatal oxycodone exposure, Cells, 9, 21, https://doi.org/10.3390/cells9010021.
- Ben Maamar, M., Nilsson, E. E., and Skinner, M. K. (2021) Epigenetic transgenerational inheritance, gametogenesis and germline development, Biol. Reprod., 105, 570-592, https://doi.org/10.1093/biolre/ioab085.
- Lyu, Y., Kaddour, H., Kopcho, S., Panzner, T. D., Shouman, N., Kim, E.-Y., Martinson, J., McKay, H., Martinez-Maza, O., Margolick, J. B., Stapleton, J. T., and Okeoma, C. M. (2019) Human immunodeficiency virus (HIV) infection and use of illicit substances promote secretion of semen exosomes that enhance monocyte adhesion and induce actin reorganization and chemotactic migration, Cells, 8, 1027, https://doi.org/ 10.3390/cells8091027.
- Jarvis, R., Tamashiro-Orrego, A., Promes, V., Tu, L., Shi, J., and Yang, Y. (2020) Cocaine self-administration and extinction inversely alter neuron to glia exosomal dynamics in the nucleus accumbens, Front. Cell. Neurosci., 13, https://doi.org/10.3389/fncel.2019.00581.
- Men, Y., Yelick, J., Jin, S., Tian, Y., Chiang, M. S. R., Higashimori, H., Brown, E., Jarvis, R., and Yang, Y. (2019) Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS, Nat. Commun., 10, 4136, https://doi.org/10.1038/s41467-019-11534-w.
- Babuta, M., Furi, I., Bala, S., Bukong, T. N., Lowe, P., Catalano, D., Calenda, C., Kodys, K., and Szabo, G. (2019) Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA 155 in alcoholic liver disease, Hepatology, 70, 2123, https://doi.org/10.1002/hep.30766.
- Crenshaw, B. J., Kumar, S., Bell, C. R., Jones, L. B., Williams, S. D., Saldanha, S. N., Joshi, S., Sahu, R., Sims, B., and Matthews, Q. L. (2019) Alcohol modulates the biogenesis and composition of microglia-derived exosomes, Biology, 8, 25, https://doi.org/10.3390/biology8020025.
- Koul, S., Schaal, V. L., Chand, S., Pittenger, S. T., Nanoth Vellichirammal, N., Kumar, V., Guda, C., Bevins, R. A., Yelamanchili, S. V., and Pendyala, G. (2020) Role of brain derived extracellular vesicles in decoding sex differences associated with nicotine self-administration, Cells, 9, 1883, https://doi.org/10.3390/ cells9081883.
- Ma, R., Kutchy, N. A., Wang, Z., and Hu, G. (2023) Extracellular vesicle-mediated delivery of anti-miR-106b inhibits morphine-induced primary ciliogenesis in the brain, Mol. Ther., 31, 1332-1345, https://doi.org/10.1016/ j.ymthe.2023.03.030.
- Ma, R., Kutchy, N. A., and Hu, G. (2021) Astrocyte-derived extracellular vesicle-mediated activation of primary ciliary signaling contributes to the development of morphine tolerance, Biol. Psychiatry, 90, 575-585, https:// doi.org/10.1016/j.biopsych.2021.06.009.
- Channer, B., Matt, S. M., Nickoloff-Bybel, E. A., Pappa, V., Agarwal, Y., Wickman, J., and Gaskill, P. J. (2023) Dopamine, immunity, and disease, Pharmacol. Rev., 75, 62-158, https://doi.org/10.1124/pharmrev.122.000618.
- Ibáñez, F., Montesinos, J., Ureña-Peralta, J. R., Guerri, C., and Pascual, M. (2019) TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles, J. Neuroinflamm., 16, 136, https://doi.org/10.1186/s12974-019-1529-x.
- Periyasamy, P., Liao, K., Kook, Y. H., Niu, F., Callen, S. E., Guo, M.-L., and Buch, S. (2018) Cocaine-mediated downregulation of miR-124 activates microglia by targeting KLF4 and TLR4 signaling, Mol. Neurobiol., 55, 3196-3210, https://doi.org/10.1007/s12035-017-0584-5.
- Chand, S., Gowen, A., Savine, M., Moore, D., Clark, A., Huynh, W., Wu, N., Odegaard, K., Weyrich, L., Bevins, R. A., Fox, H. S., Pendyala, G., and Yelamanchili, S. V. (2021) A comprehensive study to delineate the role of an extracellular vesicle-associated microRNA‐29a in chronic methamphetamine use disorder, J. Extracell. Vesicles, 10, e12177, https://doi.org/10.1002/jev2.12177.
- Meng, Y., Ding, J., Li, C., Fan, H., He, Y., and Qiu, P. (2020) Transfer of pathological α-synuclein from neurons to astrocytes via exosomes causes inflammatory responses after METH exposure, Toxicol. Lett., 331, 188-199, https://doi.org/10.1016/j.toxlet.2020.06.016.
- Kumar, A., Kim, S., Su, Y., Sharma, M., Kumar, P., Singh, S., Lee, J., Furdui, C. M., Singh, R., Hsu, F.-C., Kim, J., Whitlow, C. T., Nader, M. A., and Deep, G. (2021) Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone, EBioMedicine, 63, 103192, https://doi.org/10.1016/j.ebiom.2020.103192.
- Sil, S., Singh, S., Chemparathy, D. T., Chivero, E. T., Gordon, L., and Buch, S. (2021) Astrocytes & astrocyte derived extracellular vesicles in morphine induced amyloidopathy: implications for cognitive deficits in opiate abusers, Aging Disease, 12, 1389-1408, https://doi.org/10.14336/AD.2021.0406.
- Li, J. J., Wang, B., Kodali, M. C., Chen, C., Kim, E., Patters, B. J., Lan, L., Kumar, S., Wang, X., Yue, J., and Liao, F.-F. (2018) In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation, J. Neuroinflamm., 15, 8, https://doi.org/10.1186/s12974-017-1038-8.
- Caobi, A., Bonilla, J., Gomez, M., Andre, M., Yndart, A., Fernandez-Lima, F. A., Nair, M. P., and Raymond, A. D. (2023) HIV-1 and opiates modulate miRNA profiles in extracellular vesicles, Front. Immunol., 14, https://doi.org/10.3389/fimmu.2023.1259998.
- Mukherjee, S., Cabrera, M. A., Boyadjieva, N. I., Berger, G., Rousseau, B., and Sarkar, D. K. (2020) Alcohol increases exosome release from microglia to promote complement C1q-induced cellular death of proopiomelanocortin neurons in the hypothalamus in a rat model of fetal alcohol spectrum disorders, J. Neurosci., 40, 7965-7979, https://doi.org/10.1523/JNEUROSCI.0284-20.2020.
- Kumar, S., Crenshaw, B. J., Williams, S. D., Bell, C. R., Matthews, Q. L., and Sims, B. (2021) Cocaine-specific effects on exosome biogenesis in microglial cells, Neurochem. Res., 46, 1006-1018, https://doi.org/10.1007/s11064021-03231-2.
- Landfield, Q., Saito, M., Hashim, A., Canals-Baker, S., Sershen, H., Levy, E., and Saito, M. (2021) Cocaine induces sex-associated changes in lipid profiles of brain extracellular vesicles, Neurochem. Res., 46, 2909-2922, https://doi.org/10.1007/s11064-021-03395-x.
- Ibáñez, F., Ureña-Peralta, J. R., Costa-Alba, P., Torres, J.-L., Laso, F.-J., Marcos, M., Guerri, C., and Pascual, M. (2020) Circulating microRNAs in extracellular vesicles as potential biomarkers of alcohol-induced neuroinflammation in adolescence: gender differences, Int. J. Mol. Sci., 21, 6730, https://doi.org/10.3390/ijms21186730.
- Liu, Y., Li, J., Bu, H., Wang, H., Zhang, Y., Shen, Q., Li, M., Lu, Z., Rong, X., Zheng, D., and Peng, Y. (2021) Circular RNA expression alteration identifies a novel circulating biomarker in serum exosomal for detection of alcohol dependence, Addict Biol., 26, e13031, https://doi.org/10.1111/adb.13031.
- Chen, F., Xu, Y., Shi, K., Zhang, Z., Xie, Z., Wu, H., Ma, Y., Zhou, Y., Chen, C., Yang, J., Wang, Y., Robbins, T. W., Wang, K., and Yu, J. (2022) Multi-omics study reveals associations among neurotransmitter, extracellular vesicle-derived microRNA and psychiatric comorbidities during heroin and methamphetamine withdrawal, Biomed. Pharmacother., 155, 113685, https://doi.org/10.1016/j.biopha.2022.113685.
- Chen, F., Zou, L., Dai, Y., Sun, J., Chen, C., Zhang, Y., Peng, Q., Zhang, Z., Xie, Z., Wu, H., Tian, W., Yu, X., Yu, J., and Wang, K. (2021) Prognostic plasma exosomal microRNA biomarkers in patients with substance use disorders presenting comorbid with anxiety and depression, Sci. Rep., 11, 6271, https://doi.org/10.1038/s41598021-84501-5.
- Kim, B., Tag, S. H., Kim, Y. S., Cho, S. N., and Im, H.-I. (2022) Circulating microRNA miR-137 as a stable biomarker for methamphetamine abstinence, Psychopharmacology (Berl), 239, 831-840, https://doi.org/10.1007/s00213022-06074-z.
- Zhang, Z., Wu, H., Peng, Q., Xie, Z., Chen, F., Ma, Y., Zhang, Y., Zhou, Y., Yang, J., Chen, C., Li, S., Zhang, Y., Tian, W., Wang, Y., Xu, Y., Luo, H., Zhu, M., Kuang, Y.-Q., Yu, J., and Wang, K. (2021) Integration of molecular inflammatory interactome analyses reveals dynamics of circulating cytokines and extracellular vesicle long non-coding RNAs and mRNAs in heroin addicts during acute and protracted withdrawal, Front. Immunol., 12, 730300, https://doi.org/10.3389/fimmu.2021.730300.
- Ganesh, S., Lam, T. T., Garcia-Milian, R., Cyril D’Souza, D., Nairn, A. C., Elgert, K., Eitan, E., and Ranganathan, M. (2023) Peripheral signature of altered synaptic integrity in young onset cannabis use disorder: a proteomic study of circulating extracellular vesicles, World J. Biol. Psychiatry, 24, 603-613, https://doi.org/10.1080/ 15622975.2023.2197039.
- Kodidela, S., Wang, Y., Patters, B. J., Gong, Y., Sinha, N., Ranjit, S., Gerth, K., Haque, S., Cory, T., McArthur, C., Kumar, A., Wan, J. Y., and Kumar, S. (2020) Proteomic profiling of exosomes derived from plasma of HIV-infected alcohol drinkers and cigarette smokers, J. Neuroimmune Pharmacol., 15, 501-519, https://doi.org/10.1007/ s11481-019-09853-2.
- Kodidela, S., Gerth, K., Sinha, N., Kumar, A., Kumar, P., and Kumar, S. (2020) Circulatory astrocyte and neuronal EVs as potential biomarkers of neurological dysfunction in HIV-infected subjects and alcohol/tobacco users, Diagnostics, 10, 349, https://doi.org/10.3390/diagnostics10060349.
- Kodidela, S., Ranjit, S., Sinha, N., McArthur, C., Kumar, A., and Kumar, S. (2018) Cytokine profiling of exosomes derived from the plasma of HIV-infected alcohol drinkers and cigarette smokers, PLoS One, 13, e0201144, https://doi.org/10.1371/journal.pone.0201144.
- Ezquer, F., Quintanilla, M. E., Morales, P., Santapau, D., Ezquer, M., Kogan, M. J., Salas-Huenuleo, E., Herrera-Marschitz, M., and Israel, Y. (2019) Intranasal delivery of mesenchymal stem cell-derived exosomes reduces oxidative stress and markedly inhibits ethanol consumption and post-deprivation relapse drinking, Addict Biol., 24, 994-1007, https://doi.org/10.1111/adb.12675.
- Mellado, S., Cuesta, C. M., Montagud, S., Rodríguez-Arias, M., Moreno-Manzano, V., Guerri, C., and Pascual, M. (2023) Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in neuroinflammation and cognitive dysfunctions induced by binge-like ethanol treatment in adolescent mice, CNS Neurosci. Ther., 29, 4018-4031, https://doi.org/10.1111/cns.14326.
Supplementary files
