Low Molecular Weight Neurotrophin-3 Mimetics, Distinct in the Pattern of Activation of Postreceptor Signaling, Attenuate the Manifestations of Morphine Withdrawal in Rats in Different Ways

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The accumulated data suggest that changing activity levels of tyrosine kinase receptor signaling pathways may regulate opiate-related neuroadaptation of the noradrenergic system. Neurotrophin-3 (NT-3) interacts with tropomyosin receptor kinases (TRK), binding predominantly to TRKC receptors, which are expressed in noradrenergic neurons of locus coeruleus. Taking into account the difficulties of delivering full-size neurotrophins to the CNS after systemic administration, low-molecular mimetics of the 4th loop of NT-3, hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301) and hexamethylenediamide bis-(N-γ-hydroxybutyril-L-glutamyl-L-asparagine) (GTS-302), interacting with TRKC and TRKB receptors, were synthesized. The aim of this work was a comparative study of NT–3 mimetics effect on the manifestations of morphine withdrawal symptoms in albino rats with opiate dependence, as well as the features of activation of postreceptor signaling pathways by NT–3 mimetics. The dipeptides GTS-301 and GTS-302 after acute administration at doses of 0.1, 1.0 and 10.0 mg/kg, i.p., had a dose-dependent effect on the specific signs of morphine withdrawal with the most effective dose of 1.0 mg/kg. The maximum reduction in the total morphine withdrawal syndrome index for GTS-301 was 31.3% and for GTS-302 – 41.4%. Unlike GTS-301, GTS-302 weakened mechanical allodynia, reducing tactile sensitivity. When studying the activation of postreceptor signaling pathways by NT-3 mimetics on a culture of HT-22 hippocampal cells, it was shown that they had a different pattern of postreceptor signaling: GTS-302 (10−6 M), like NT-3, activated all three MAPK/ERK, PI3K/AKT/mTOR and PLCy1, while GTS-301(10−6 M) – only MAPK/ERK- and PLCy1. Thus, the revealed features of attenuation of morphine withdrawal syndrome in rats after acute GTS-301 and GTS-302 administration may be associated with a different pattern of activation of postreceptor pathways.

Full Text

Restricted Access

About the authors

L. G. Kolik

Federal Research Center for Innovative and Emerging Biomedical and Pharmaceutical Technologies

Author for correspondence.
Email: kolik_lg@academpharm.ru
Russian Federation, 125315, Moscow

M. A. Konstantinopolsky

Federal Research Center for Innovative and Emerging Biomedical and Pharmaceutical Technologies

Email: kolik_lg@academpharm.ru
Russian Federation, 125315, Moscow

S. V. Nikolaev

Federal Research Center for Innovative and Emerging Biomedical and Pharmaceutical Technologies

Email: kolik_lg@academpharm.ru
Russian Federation, 125315, Moscow

I. O. Logvinov

Federal Research Center for Innovative and Emerging Biomedical and Pharmaceutical Technologies

Email: kolik_lg@academpharm.ru
Russian Federation, 125315, Moscow

T. A. Antipova

Federal Research Center for Innovative and Emerging Biomedical and Pharmaceutical Technologies

Email: kolik_lg@academpharm.ru
Russian Federation, 125315, Moscow

T. A. Gudasheva

Federal Research Center for Innovative and Emerging Biomedical and Pharmaceutical Technologies

Email: kolik_lg@academpharm.ru
Russian Federation, 125315, Moscow

References

  1. Frenois, F., Cador, M., Caillé, S., Stinus, L., and Le Moine, C. (2002) Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal, Eur. J. Neurosci., 16, 1377-1389, https:// doi.org/10.1046/j.1460-9568.2002.02187.x.
  2. Alvarez-Bagnarol, Y., Marchette, R. C. N., Francis, C., Morales, M. M., and Vendruscolo, L. F. (2022) Neuronal correlates of hyperalgesia and somatic signs of heroin withdrawal in male and female mice, eNeuro, 9, ENEURO.0106-22.2022, https://doi.org/10.1523/ENEURO.0106-22.2022.
  3. Maldonado, R. (1997) Participation of noradrenergic pathways in the expression of opiate withdrawal: biochemical and pharmacological evidence, Neurosci. Biobehav. Rev., 21, 91-104, https://doi.org/10.1016/01497634(95)00061-5.
  4. Numan, S., Lane-Ladd, S. B., Zhang, L., Lundgren, K. H., Russell, D. S., Seroogy, K. B, and Nestler, E. J. (1998) Differential regulation of neurotrophin and TRK receptor mRNAs in catecholaminergic nuclei during chronic opiate treatment and withdrawal, J. Neurosci., 18, 10700-10708, https://doi.org/10.1523/JNEUROSCI. 18-24-10700.1998.
  5. Smith, M. A., Makino, S., Altemus, M., Michelson, D., Hong, S. K., Kvetnansky R, and Post, R. M. (1995) Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus, Proc. Natl. Acad. Sci. USA, 92, 8788-8792, https://doi.org/10.1073/pnas.92.19.8788.
  6. Zhang, C., Guo, Y. Q., Qiao, J. T., and Dafny, N. (1998) Locus coeruleus modulates thalamic nociceptive responses via adrenoceptors, Brain Res., 784, 116-122, https://doi.org/10.1016/s0006-8993(97)01197-9.
  7. Sklair-Tavron, L., and Nestler, E. J. (1995) Opposing effects of morphine and the neurotrophins, NT-3, NT-4, and BDNF, on locus coeruleus neurons in vitro, Brain Res., 702, 117-125, https://doi.org/10.1016/0006-8993(95)01029-8.
  8. Sklair-Tavron, L., Shi, W. X., Lane, S. B., Harris, H. W., Bunney, B. S., and Nestler, E. J. (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons, Proc. Natl. Acad. Sci. USA, 93, 11202-11207, https://doi.org/10.1073/pnas.93.20.11202.
  9. Gallego, X., Murtra, P., Zamalloa, T., Canals, J. M., Pineda, J., Amador-Arjona, A, Maldonado, R, and Dierssen, M. (2010) Increased opioid dependence in a mouse model of panic disorder, Front. Behav. Neurosci., 3, 60, https://doi.org/10.3389/neuro.08.060.2009.
  10. Gudasheva, T. A., Povarnina, P. Y., Tarasiuk, A. V., and Seredenin, S. B. (2021) Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: design and pharmacological properties, Med. Res. Rev., 41, 2746-2774, https://doi.org/10.1002/med.21721.
  11. Sazonova, N. M., Tarasiuk, A. V., Melnikova, M. V., Zhanataev I. A., Logvinov, I. O., Nikolaev, S. V., Nikiforov, D. M., Antipova, T. A., Povarnina, P. Yu., Gudasheva, T. A., and Seredenin, S. B. (2024). Stereospecificity of the cytoprotective and antidepressant-like activities of GTS-301, a dimeric dipeptide mimetic of neurotrophin-3, Pharmaceut. Chem. J., 57, 1888–1897, https://doi.org/10.1007/s11094-024-03093-2.
  12. Tarasiuk, A. V., Sazonova, N. M., Melnikova, M. V., Pomogaybo, S. V., Logvinov, I. O., Nikolaev, S.V., Nikiforov, D. M., Antipova, T. A., Povarnina, P. Yu, Vakhitova, Yu. V., Gudasheva, T. A., and Seredenin, S. B. (2023) Design and synthesis of a novel dipeptide mimetic of the 4th loop of neurotrophin-3 and its pharmacological effects, Mendeleev Commun., 33, 786-789, https://doi.org/10.1016/j.mencom.2023.10.016.
  13. Kolik, L. G., and Konstantinopolsky, M. A. (2019) Comparative assessment of the effectiveness of noncompetitive NMDA receptor antagonists amantadine and hemantane in morphine withdrawal syndrome model, Bull. Exp. Biol. Med., 166, 739-743, https://doi.org/10.1007/s10517-019-04430-2.
  14. Freshney, R. I. (2010) Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, Wiley.
  15. Noble, J. E., and Bailey, M. J. A. (2009) Chapter 8 Quantitation of Protein. B, in Methods in Enzymology, Elsevier, pp. 73-95.
  16. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA, 76, 4350-4354, https:// doi.org/10.1073/pnas.76.9.4350.
  17. Gudasheva, T. A., Sazonova, N. M., Tarasiuk, A. V., Logvinov, I. O., Antipova, T. A., Nikiforov, D. M., Povarnina, P. Yu., and Seredenin, S. B. (2022) The first dipeptide mimetic of neurotrofin-3: design and pharmacological properties, Dokl. Biochem. Biophys., 505, 160-165, https://doi.org/10.1134/S1607672922040032.
  18. Fdez Espejo, E., Cador, M., and Stinus, L. (1995) Ethopharmacological analysis of naloxone-precipitated morphine withdrawal syndrome in rats: a newly-developed “etho-score”, Psychopharmacology (Berl), 122, 122-130, https://doi.org/10.1007/BF02246086.
  19. Berhow, M. T., Russell, D. S., Terwilliger, R. Z., Beitner-Johnson, D., Self, D. W., Lindsay, R. M., and Nestler, E. J. (1995) Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system, Neuroscience, 68, 969-979, https://doi.org/10.1016/0306-4522(95)00207-y.
  20. Akbarian, S., Bates, B., Liu, R. J., Skirboll, S. L., Pejchal, T., Coppola, V., Sun, L. D., Fan, G., Kucera, J., Wilson, M. A., Tessarollo, L., Kosofsky, B. E., Taylor, J. R., Bothwell, M., Nestler, E. J., Aghajanian, G. K., and Jaenisch, R. (2001) Neurotrophin-3 modulates noradrenergic neuron function and opiate withdrawal, Mol. Psychiatry, 6, 593-604, https://doi.org/10.1038/sj.mp.4000897.
  21. Kolik, L. G., Konstantinopolsky, M. A., Nadorova, A. V., Kruglov, S. V., Antipova, T. A., Gudasheva, T. A., and Seredenin, S. B. (2020) Peptide mimetic of BDNF loop 4 blocks Behavioral signs of morphine withdrawal syndrome and prevents the increase in ΔFosB level in the striatum of rats, Bull. Exp. Biol. Med., 170, 30-34, https://doi.org/10.1007/s10517-020-04998-0.
  22. Kokaia, Z., Metsis, M., Kokaia, M., Elmér, E., and Lindvall, O. (1995) Co-expression of TRKB and TRKC receptors in CNS neurones suggests regulation by multiple neurotrophins, Neuroreport, 6, 769-772, https://doi.org/ 10.1097/00001756-199503270-00016.
  23. Ucha, M., Roura-Martínez, D., Ambrosio, E., and Higuera-Matas, A (2020) The role of the mTOR pathway in models of drug-induced reward and the behavioral constituents of addiction, J. Psychopharmacol. (Oxf), 34, 1176-1199, https://doi.org/10.1177/0269881120944159.
  24. Zhu, H., Zhuang, D., Lou, Z., Lai, M., Fu, D., Hong, Q., Liu, H., and Zhou, W. (2021) AKT and its phosphorylation in nucleus accumbens mediate heroin-seeking behavior induced by cues in rats, Addict Biol., 26, e13013, https://doi.org/10.1111/adb.13013.
  25. Khalifa, F. N., Hussein, R. F., Mekawy, D. M., Elwi, H. M., Alsaeed, S. A., Elnawawy, Y., and Shaheen, S. H. (2024) Potential role of the lncRNA “HOTAIR”/miRNA “206”/BDNF network in the alteration in expression of synaptic plasticity gene arc and BDNF level in sera of patients with heroin use disorder through the PI3K/AKT/mTOR pathway compared to the controls, Mol. Biol. Rep., 51, 293, https://doi.org/10.1007/s11033-024-09265-3.
  26. Zhang, X., Liang, Z., Zhou, Y., Wang, F., Wei, S., Tan, B., and Guo, Y. (2023) Artesunate inhibits apoptosis and promotes survival in Schwann cells via the PI3K/AKT/mTOR axis in diabetic peripheral neuropathy, Biol. Pharm. Bull., 46, 764-772, https://doi.org/10.1248/bpb.b22-00619.
  27. Huang, J., Chen, D., Yan, F., Wu, S., Kang, S., Xing, W., Zeng, W., and Xie, J. (2020) JTC-801 alleviates mechanical allodynia in paclitaxel-induced neuropathic pain through the PI3K/AKT/mTOR pathway, Eur. J. Pharmacol., 883, 173306, https://doi.org/10.1016/j.ejphar.2020.173306.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of mimetics of the fourth loop of neurotrophin-3 on the total index of naloxone-induced morphine withdrawal syndrome in mongrel male rats (in % of control). * p < 0.05; ** p < 0.01; *** p < 0.001 - significant difference from control (group ‘0.0’); 8 animals in each group, data are presented as mean ± standard error of the mean (M ± SEM)

Download (72KB)
3. Fig. 2. Phosphorylation of AKT1/2/3 (a), ERK1/2 (b), PLCγ1 (c) after administration of NT-3 and GTS-301 (10-6 M) to mouse hippocampal cell culture of HT-22 line (original western blots and their densitometry results). Tracks: 1, 6 - Control; 2 - HTS-301, 5 min; 3 - NT-3, 5 min; 4 - HTS-301, 15 min; 5 - NT-3, 15 min; 7 - HTS-301, 30 min; 8 - NT-3, 30 min; 9 - HTS-301, 60 min; 10 - NT-3, 60 min; 11 - HTS-301, 180 min; 12 - NT-3, 180 min. Data are presented as mean value ± standard deviation (M ± SD) of three independent experiments; * p < 0.05 - reliable difference from control

Download (295KB)
4. Fig. 3. Phosphorylation of AKT1/2/3 (a), ERK1/2 (b), PLCγ1 (c) after administration of NT-3 and GTS-302 (10-6 M) to mouse hippocampal cell culture of HT-22 line (original western blots and their densitometry results). Tracks: 1, 6 - Control, 2 - HTS-302, 5 min; 3 - NT-3, 5 min; 4 - HTS-302, 15 min; 5 - NT-3, 15 min; 7 - HTS-302, 30 min; 8 - NT-3, 30 min; 9 - HTS-302, 60 min; 10 - NT-3, 60 min; 11 - HTS-302, 180 min; 12 - NT-3, 180 min. Data are presented as mean ± standard deviation (M ± SD) of three independent experiments; * p < 0.05 - reliable difference from control

Download (290KB)

Copyright (c) 2024 Russian Academy of Sciences