Study of Neuroinflammation in the Rat Hippocampus during Ethanol Exposure and Pharmacologic Correction with Azithromycin: New Data and Future Perspectives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

With prolonged ethanol ingestion, disturbances in the emotional spectrum develop, and memory problems are noted. These symptoms may be mediated by the development of neurochemical changes in the hippocampus of the brain. Although there is evidence that the hippocampus is vulnerable to chronic alcohol intoxication and the development of neuroinflammation and neurodegeneration in this brain region, the key molecular mechanisms have not been identified. The aim of the study was to investigate changes in the immune system in the periphery as well as in the hippocampus of the rat brain during ethanol exposure and during pharmacological correction with azithromycin (AZM). Long-term ethanol exposure was modeled by injecting rats with a 20% ethanol solution (4 g/kg) for 4 weeks. General biochemical and clinical blood analysis was performed in animals. The expression levels of cytokine genes (Il1β, Ccl2, Il6, Il11, Il13, Tnfα, Tgfβ) and toll-like receptor system genes (Tlr3, Tl4, Tlr7, Nfkb1, Hmgb1) and TLR system-related microRNA molecules (miR-182, miR-155-5p, miR-96-5p, miR-let-7b) were evaluated in the hippocampus. IL-1β protein content was also assessed in the hippocampus. Prolonged alcoholization caused an increase in mRNA and protein levels of IL-1β, and a decrease in mRNA levels of Tnfα, Il11, Tlr3, and Tlr7. The contents of miR-let-7b, miR-96, and miR-155 were downregulated in the hippocampus during long-term alcoholization. Elevated Il1β mRNA and protein levels and Hmgb1 mRNA levels were maintained under conditions of ethanol withdrawal. Tlr3 mRNA levels were decreased under withdrawal. Administration of AZM reduced IL-1β, TLR3 and HMGB1 mRNA levels under conditions of ethanol withdrawal, and at higher doses of the drug, a decrease in IL-1β protein levels in the hippocampus of rat brain was observed. Thus, the study provided new insights into the mechanisms of neuroinflammation in the brain hippocampus during prolonged exposure to ethanol and upon withdrawal. The results obtained allowed us to outline a number of tasks for further studies in this direction.

Full Text

Restricted Access

About the authors

M. I. Airapetov

Institute of Experimental Medicine; Kirov Military Medical Academy

Author for correspondence.
Email: interleukin1b@gmail.com
Russian Federation, 197376, Saint Petersburg; 194044, Saint Petersburg

S. O. Eresko

Institute of Experimental Medicine; Saint Petersburg National Research University of Information Technologies, Mechanics and Optics

Email: interleukin1b@gmail.com
Russian Federation, 197376, Saint Petersburg; 197022, Saint Petersburg

S. A. Shamaeva

Institute of Experimental Medicine

Email: interleukin1b@gmail.com
Russian Federation, 197376, Saint Petersburg

E. R. Bychkov

Institute of Experimental Medicine

Email: interleukin1b@gmail.com
Russian Federation, 197376, Saint Petersburg

A. A. Lebedev

Institute of Experimental Medicine

Email: interleukin1b@gmail.com
Russian Federation, 197376, Saint Petersburg

P. D. Shabanov

Institute of Experimental Medicine; Kirov Military Medical Academy

Email: interleukin1b@gmail.com
Russian Federation, 197376, Saint Petersburg; 194044, Saint Petersburg

References

  1. Crews, F. T., Lawrimore, C. J., Walter, T. J., and Coleman, L. G. Jr. (2017) The role of neuroimmune signaling in alcoholism, Neuropharmacology, 122, 56-73, https://doi.org/10.1016/j.neuropharm.2017.01.031.
  2. Airapetov, M., Eresko, S., Lebedev, A., Bychkov, E., and Shabanov, P. (2021) The role of Toll-like receptors in neurobiology of alcoholism, Biosci. Trends, 15, 74-82, https://doi.org/10.5582/bst.2021.01041.
  3. Guerri, C., and Pascual, M. (2019) Impact of neuroimmune activation induced by alcohol or drug abuse on adolescent brain development, Int. J. Dev. Neurosci., 77, 89-98, https://doi.org/10.1016/j.ijdevneu. 2018.11.006.
  4. Anand, S. K., Ahmad, M. H., Sahu, M. R., Subba, R., and Mondal, A. C. (2023) Detrimental effects of alcohol-induced inflammation on brain health: from neurogenesis to neurodegeneration, Cell. Mol. Neurobiol., 43, 1885-1904, https://doi.org/10.1007/s10571-022-01308-2.
  5. Coleman, L. G., Zou, J., and Crews, F. T. (2017) Microglial-derived miRNA let-7 and HMGb1 contribute to ethanol-induced neurotoxicity via TLR7, J. Neuroinflamm., 14, 1-15, https://doi.org/10.1186/s12974-017-0799-4.
  6. Arts, N. J., Walvoort, S. J., and Kessels, R. P. (2017) Korsakoff’s syndrome: a critical review, Neuropsychi. Dis. Treat., 13, 2875-2890, https://doi.org/10.2147/NDT.S130078.
  7. Шабанов, П. Д. (1985) Экспериментальные нарушения памяти и их фармакологическая коррекция, Вестн. АМН СССР, 9, 31-38.
  8. Григоренко А. Я., Афанасьев В. В., Бабаханян Р. В. (2007) Хроническая алкогольная интоксикация, Издательство Р. Асланова «Юридический центр Пресс», СПб.
  9. Корсаков С. С. (1887) Об алкогольном параличе, Диссертация, Москва.
  10. Шабанов П. Д., Бородкин Ю. С. (1989) Нарушения памяти и их коррекция, Наука, Ленинград.
  11. Цыганков Б. Д., Овсянников С. А. (2011) Психиатрия, ГЭОТАР-Медиа, Москва.
  12. Crews, F. T., Qin, L., Sheedy, D., Vetreno, R. P., and Zou, J. (2013) HMGB1/TLR receptor danger signaling increases brain neuroimmune activation in alcohol dependence, Biol. Psychiatry, 73, 602-612, https://doi.org/10.1016/ j.biopsych.2012.09.030.
  13. Crews, F. T., Walter, T. J., Coleman, L. G., and Vetreno, R. P. (2017) Toll-like receptor signaling and stages of addiction, Psychopharmacology (Berl), 234, 1483-1498, https://doi.org/10.1007/s00213-017-4560-6.
  14. Кокряков В. Н. (2006) Очерки о врожденном иммунитете, Наука, СПб.
  15. Лебедев К. А., Понякина И. Д. (2017) Иммунология образраспознающих рецепторов, Ленанд, Москва.
  16. Ноздрачев А. Д., Лебедев А. А., Шабанов П. Д. (2000) Организация подкрепляющих систем мозга, Вестник Санкт-Петербургского университета. Серия 3. Биология, 4, 62-76.
  17. Шабанов П. Д., Лебедев А. А. (2001) Подкрепляющие системы мозга: локализация, нейрохимическая организация, участие в формировании зависимости от психостимуляторов, Психофармакология и биологическая наркология, 1, 13-26.
  18. Becker H. C. (2014) Alcohol and the Nervous System, Handbook of Clinical Neurology, Elsevier, Amsterdam.
  19. Ramarao, S., Pang, Y., Carter, K., and Bhatt, A. (2022) Azithromycin protects oligodendrocyte progenitor cells against lipopolysaccharide-activated microglia-induced damage, Dev. Neurosci., 44, 1-12, https://doi.org/ 10.1159/000519874.
  20. Lin, S. J., Kuo, M. L., Hsiao, H. S., and Lee, P. T. (2016) Azithromycin modulates immune response of human monocyte-derived dendritic cells and CD4+ T cells, Int. Immunopharmacol., 40, 318-326, https://doi.org/10.1016/ j.intimp.2016.09.012.
  21. Barks, J. D. E., Liu, Y., Wang, L., Pai, M. P., and Silverstein, F. S. (2019) Repurposing azithromycin for neonatal neuroprotection, Pediatr. Res., 86, 444-451, https://doi.org/10.1038/s41390-019-0408-6.
  22. Kopper, T. J., and Gensel, J. C. (2021) Continued development of azithromycin as a neuroprotective therapeutic for the treatment of spinal cord injury and other neurological conditions, Neural Regen. Res., 16, 508-509, https://doi.org/10.4103/1673-5374.293146.
  23. McMahan, R. H., Najarro, K. M., Mullen, J. E., Paul, M. T., Orlicky, D. J., Hulsebus, H. J., and Kovacs, E. J. (2021) A novel murine model of multi-day moderate ethanol exposure reveals increased intestinal dysfunction and liver inflammation with age, Immun. Ageing, 18, 37, https://doi.org/10.1186/s12979021-00247-8.
  24. Coleman, L. G. Jr., Zou, J., Qin, L., and Crews, F. T. (2018) HMGB1/IL-1b complexes regulate neuroimmune responses in alcoholism, Brain Behav. Immun., 72, 61-77, https://doi.org/10.1016/j.bbi.2017.10.027.
  25. Tucker, A. E., Alicea Pauneto, C. D. M., Barnett, A. M., and Coleman, L. G. Jr. (2022) Chronic ethanol causes persistent increases in Alzheimer’s tau pathology in female 3xTg-AD mice: a potential role for lysosomal impairment, Front. Behav. Neurosci., 16, 886634, https://doi.org/10.3389/fnbeh.2022.886634.
  26. Paxinos G., and Watson C. (2017) The Rat brain in Stereotaxic Coordinates, Academic Press, Sydney.
  27. Shi, R., Sun, Y. H., Zhang, X. H., Chiang, V. L. (2012) Poly(T) adaptor RT-PCR, Methods Mol. Biol., 822, 53-66, https://doi.org/10.1007/978-1-61779-427-8_4.
  28. Буров Ю. В., Ведерникова Н. Н. (1985) Нейрохимия и фармакология алкоголизма, Медицина, Москва.
  29. Ветлугина Т. П., Прокопьева В. Д., Бохан Н. А. (2023) Биологические основы адъювантной терапии алкоголизма, Издательство Томского государственного университета, Томск.
  30. Газатова Н. Д., Юрова К. А., Гаврилов Д. В., Литвинова Л. С. (2018) Алкоголь и иммунитет, Гены Клетки, 13, 47-55.
  31. Цыган В. Н., Акперов Э. К., Востриков В. В., Шабанов П. Д. (2007) Иммунные дисфункции у наркозависимых и способы их коррекции, Обзоры Клин. Фармакол. Лек. Тер., 5, 2-81.
  32. Priyanka, S. H., Thushara, A. J., Rauf, A. A., and Indira, M. (2019) Alcohol induced NLRP3 inflammasome activation in the brain of rats is attenuated by ATRA supplementation, Brain Behav. Immun. Health, 2, 100024, https://doi.org/10.1016/j.bbih.2019.100024.
  33. Alfonso-Loeches, S., Pascual-Lucas, M., Blanco, A. M., Sanchez-Vera, I., and Guerri, C. (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage, J. Neurosci., 30, 8285-8295, https:// doi.org/10.1523/JNEUROSCI.0976-10.2010.
  34. Кетлинский С. А., Симбирцев А. С. (2008) Цитокины, Фолиант, СПб.
  35. Airapetov, M., Eresko, S., Ignatova, P., Lebedev, A., Bychkov, E., and Shabanov, P. (2022) A brief summary regarding the roles of interleukin-11 in neurological diseases, Biosci. Trends, 16, 367-370, https://doi.org/10.5582/bst.2022.01331.
  36. Airapetov, M. I., Eresko, S. O., Kochkin, D. V., Bychkov, E. R., Lebedev, A. A., and Shabanov, P. D. (2022) Ginsenosides affect the system of Toll-like receptors in the brain of rats under conditions of long-term alcohol withdrawal, Biomed. Khim., 68, 459-469, https://doi.org/10.18097/PBMC20226806459.
  37. Airapetov, M., Eresko, S., Ignatova, P., Lebedev, A., Bychkov, E., and Shabanov, P. (2024) Effect of rifampicin on TLR4-signaling pathways in the nucleus accumbens of the rat brain during abstinence of long-term alcohol treatment, Alcohol Alcohol., 59, agae016, https://doi.org/10.1093/alcalc/agae016.
  38. Айрапетов М. И., Ереско С. О., Бычков Е. Р., Лебедев А. А., Шабанов П. Д. (2020) Уровень экспрессии toll-подобных рецепторов изменяется в эмоциогенных структурах мозга крыс в условиях длительной алкоголизации и при отмене этанола, Мед. Иммунол., 22, 77-86, https://doi.org/10.15789/1563-0625-EOT-1836.
  39. Lim, Y., Beane-Ebel, J. E., and Tanaka, Y. (2021) Exploration of alcohol use disorder-associated brain miRNA-mRNA regulatory networks, Transl. Psychiatry, 11, 504, https://doi.org/10.1038/s41398-021-01635-w.
  40. Lehmann, S. M., Krüger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., Habbel, P., Kälin, R., Franzoni, E., Rybak, A., Nguyen, D., Veh, R., Ninnemann, O., Peters, O., Nitsch, R., Heppner, F. L., Golenbock, D., Schott, E., Ploegh, H. L., Wulczyn, F. G., and Lehnardt, S. (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration, Nat. Neurosci., 15, 827-835, https://doi.org/10.1038/nn.3113.
  41. Lippai, D., Bala, S., Csak, T., Kurt-Jones, E. A., and Szabo, G. (2013) Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice, PLoS One, 8, e70945, https://doi.org/10.1371/journal.pone.0070945.
  42. Ureña-Peralta, J. R., Alfonso-Loeches, S., Cuesta-Diaz, C. M., García-García, F., and Guerri, C. (2018) Deep sequencing and miRNA profiles in alcohol-induced neuroinflammation and the TLR4 response in mice cerebral cortex, Sci. Rep., 8, 15913, https://doi.org/10.1038/s41598-018-34277-y.
  43. Ureña-Peralta, J. R., Pérez-Moraga, R., García-García, F., and Guerri, C. (2020) Lack of TLR4 modifies the miRNAs profile and attenuates inflammatory signaling pathways, PLoS One, 15, 0237066, https://doi.org/10.1371/journal.pone.0237066.
  44. DiSabato, D. J., Nemeth, D. P., Liu, X., Witcher, K. G., O’Neil, S. M., Oliver, B., Bray, C. E., Sheridan, J. F., Godbout, J. P., and Quan, N. (2021) Interleukin-1 receptor on hippocampal neurons drives social withdrawal and cognitive deficits after chronic social stress, Mol. Psychiatry, 26, 4770-4782, https://doi.org/10.1038/s41380020-0788-3.
  45. Pawley, L. C., Hueston, C. M., O’Leary, J. D., Kozareva, D. A., Cryan, J. F., O’Leary, O. F., and Nolan, Y. M. (2020) Chronic intrahippocampal interleukin-1b overexpression in adolescence impairs hippocampal neurogenesis but not neurogenesis-associated cognition, Brain Behav. Immun., 83, 172-179, https://doi.org/10.1016/j.bbi. 2019.10.007.
  46. Prieto, G. A., Tong, L., Smith, E. D., and Cotman, C. W. (2019) TNFα and IL-1b but not IL-18 suppresses hippocampal long-term potentiation directly at the synapse, Neurochem. Res., 44, 49-60, https://doi.org/10.1007/s11064-018-2517-8.
  47. Vijayaraj, S. L., Feltham, R., Rashidi, M., Frank, D., Liu, Z., Simpson, D. S., Ebert, G., Vince, A., Herold, M. J., Kueh, A., Pearson, J. S., Dagley, L. F., Murphy, J. M., Webb, A. I., Lawlor, K. E., and Vince, J. E. (2021) The ubiquitylation of IL-1b limits its cleavage by caspase-1 and targets it for proteasomal degradation, Nat. Commun., 12, 2713, https://doi.org/10.1038/s41467-021-22979-3.
  48. Tong, Z., Yang, X., and Li, J. (2022) Research progress on the mechanism of interleukin-1b on epiphyseal plate chondrocytes, Eur. J. Med. Res., 27, 313, https://doi.org/10.1186/s40001-022-00893-8.
  49. Kalb, D. M., Adikari, S. H., Hong-Geller, E., and Werner, J. H. (2019) Single-cell correlations of mRNA and protein content in a human monocytic cell line after LPS stimulation, PLoS One, 14, e0215602, https://doi.org/10.1371/journal.pone.0215602

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cytokine mRNA content in the brain hippocampus of rats with long-term ethanol consumption; * p ≤ 0.05 - relative to the control group

Download (135KB)
3. Fig. 2. Relative level of mRNA content of TLR system genes in the hippocampus of the brain of rats with long-term ethanol consumption; * p ≤ 0.05 - in relation to the control group

Download (151KB)
4. Fig. 3. The mRNA content of cytokines and TLR system genes in the brain hippocampus of rats during ethanol withdrawal; * p ≤ 0.05 - in relation to the control group

Download (111KB)
5. Fig. 4. The mRNA content of TLR system genes in rat brain hippocampus under pharmacological correction with azithromycin under conditions of ethanol withdrawal; * p < 0.05 - in relation to the control group; # p < 0.05 - in relation to the ‘ethanol + water withdrawal’ group

Download (185KB)
6. Fig. 5. Cytokine mRNA content in rat brain hippocampus during pharmacological correction with azithromycin under conditions of ethanol withdrawal; * p < 0.05 - in relation to the control group; # p < 0.05 - in relation to the ‘ethanol + water withdrawal’ group

Download (147KB)
7. Fig. 6. IL-1β protein content in the hippocampus of rat brain; * p < 0.05 - relative to the control group; # p < 0.05 - relative to the ‘ethanol + water cancellation’ group

Download (137KB)

Copyright (c) 2024 Russian Academy of Sciences