Effect of 8-oxo-1,N6-ethenoadenine derivatives on the activity of RNA polymerases of the SARS-CoV-2 virus and Escherichia coli

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-εA), a synthetic compound that is a combination of two modifications of adenine: 8-oxoadenine and 1,N6-ethenoadenine. In this study we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by RNA-dependent RNA polymerase of the SARS-CoV-2 virus into the synthesized RNA opposite template residues A and G in the presence of Mn2+ ions. In the case of Escherichia coli RNA polymerase, the incorporation occurred opposite A residues in the template DNA strand. If oxo-εA was present instead of adenine in the template DNA strand, transcription was completely stopped at the site of modification. At the same time, oxo-εATP did not suppress RNA synthesis by both RNA polymerases in the presence of unmodified nucleotides. Thus, oxo-εA modification significantly disrupts the template properties of the nucleotide during RNA synthesis by RNA polymerases of different classes, and the corresponding nucleotide derivatives are not potential antiviral or antibacterial transcription inhibitors.

Full Text

Restricted Access

About the authors

I. V. Petushkov

National Research Centre “Kurchatov Institute”; Institute of Gene Biology, Russian Academy of Sciences

Author for correspondence.
Email: telomer1@rambler.ru
Russian Federation, 123182 Moscow; 119334 Moscow

A. V. Aralov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; RUDN University

Email: telomer1@rambler.ru
Russian Federation, 117997 Moscow; 117198 Moscow

I. A. Ivanov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; LLC “Organicum”

Email: telomer1@rambler.ru
Russian Federation, 117997 Moscow; 127486 Moscow

M. S. Baranov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Pirogov Russian National Research Medical University

Email: telomer1@rambler.ru
Russian Federation, 117997 Moscow; 117997 Moscow

T. S. Zatsepin

Lomonosov Moscow State University

Email: telomer1@rambler.ru

Faculty of Chemistry

Russian Federation, 119991 Moscow

A. V. Kulbachinskiy

National Research Centre “Kurchatov Institute”; Institute of Gene Biology, Russian Academy of Sciences

Email: avkulb@yandex.ru
Russian Federation, 123182 Moscow; 119334 Moscow

References

  1. Aralov, A. V., Gubina, N., Cabrero, C., Tsvetkov, V. B., Turaev, A. V., Fedeles, B. I., Croy, R. G., Isaakova, E. A., Melnik, D., Dukova, S., Ryazantsev, D. Y., Khrulev, A. A., Varizhuk, A. M., Gonzalez, C., Zatsepin, T. S., and Essigmann, J. M. (2022) 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A-->T transversions in Escherichia coli, Nucleic Acids Res., 50, 3056-3069, https:// doi.org/10.1093/nar/gkac148.
  2. Kim, D., Lee, J.-Y., Yang, J.-S., Kim, J. W., Kim, V. N., and Chang, H. (2020) The architecture of SARS-CoV-2 transcriptome, Cell, 181, 914-921.e910, https://doi.org/10.1016/j.cell.2020.04.011.
  3. Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., and Cramer, P. (2020) Structure of replicating SARS-CoV-2 polymerase, Nature, 584, 154-156, https://doi.org/10.1038/s41586-020-2368-8.
  4. Shannon, A., Selisko, B., Le, N. T., Huchting, J., Touret, F., Piorkowski, G., Fattorini, V., Ferron, F., Decroly, E., Meier, C., Coutard, B., Peersen, O., and Canard, B. (2020) Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis, Nat. Commun., 11, 4682, https://doi.org/10.1038/s41467-020-18463-z.
  5. Yin, X., Popa, H., Stapon, A., Bouda, E., and Garcia-Diaz, M. (2023) Fidelity of ribonucleotide incorporation by the SARS-CoV-2 replication complex, J. Mol. Biol., 435, 167973, https://doi.org/10.1016/j.jmb.2023.167973.
  6. Moeller, N. H., Shi, K., Demir, O., Belica, C., Banerjee, S., Yin, L., Durfee, C., Amaro, R. E., and Aihara, H. (2022) Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN, Proc. Natl. Acad. Sci. USA, 119, https://doi.org/10.1073/pnas.2106379119.
  7. Drake, J. W., and Holland, J. J. (1999) Mutation rates among RNA viruses, Proc. Natl. Acad. Sci. USA, 96, 13910-13913, https://doi.org/10.1073/pnas.96.24.13910.
  8. Jenkins, G. M., Rambaut, A., Pybus, O. G., and Holmes, E. C. (2002) Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis, J. Mol. Evol., 54, 156-165, https://doi.org/10.1007/s00239-001-0064-3.
  9. Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., and Belshaw, R. (2010) Viral mutation rates, J. Virol., 84, 9733-9748, https://doi.org/10.1128/JVI.00694-10.
  10. Jones, A. N., Mourao, A., Czarna, A., Matsuda, A., Fino, R., Pyrc, K., Sattler, M., and Popowicz, G. M. (2022) Characterization of SARS-CoV-2 replication complex elongation and proofreading activity, Sci. Rep., 12, 9593, https://doi.org/10.1038/s41598-022-13380-1.
  11. Petushkov, I., Esyunina, D., and Kulbachinskiy, A. (2023) Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase, FEBS J., 290, 80-92, https://doi.org/10.1111/febs.16587.
  12. Sacramento, C. Q., Fintelman-Rodrigues, N., Temerozo, J. R., da Silva, A. P. D., Dias, S., da Silva, C. D. S., Ferreira, A. C., Mattos, M., Pao, C. R. R., de Freitas, C. S., Soares, V. C., Hoelz, L. V. B., Fernandes, T. V. A., Branco, F. S. C., Bastos, M. M., Boechat, N., Saraiva, F. B., Ferreira, M. A., Jockusch, S., Wang, X., Tao, C., Chien, M., Xie, W., Patel, D., et al. (2021) In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19, J. Antimicrob. Chemother., 76, 1874-1885, https://doi.org/ 10.1093/jac/dkab072.
  13. Jockusch, S., Tao, C., Li, X., Chien, M., Kumar, S., Morozova, I., Kalachikov, S., Russo, J. J., and Ju, J. (2020) Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir, Sci. Rep., 10, 16577, https://doi.org/10.1038/s41598-020-73641-9.
  14. Kokic, G., Hillen, H. S., Tegunov, D., Dienemann, C., Seitz, F., Schmitzova, J., Farnung, L., Siewert, A., Hobartner, C., and Cramer, P. (2021) Mechanism of SARS-CoV-2 polymerase stalling by remdesivir, Nat. Commun., 12, 279, https://doi.org/10.1038/s41467-020-20542-0.
  15. Yin, W. M. C., Luan, X., Shen, D. D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., Zhang, S., Zhang, Y., and Xu, H. E. (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir, Science, 368, 1499-1504, https://doi.org/10.1126/science.abc1560.
  16. Kabinger, F. S. C., Schmitzová, J., Dienemann, C., Kokic, G., Hillen, H. S., Höbartner, C., and Cramer, P. (2021) Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat. Struct. Mol. Biol., 28, 740-746, https:// doi.org/10.1038/s41594-021-00651-0.
  17. Wang, J., Shi, Y., Reiss, K., Maschietto, F., Lolis, E., Konigsberg, W. H., Lisi, G. P., and Batista, V. S. (2022) Structural insights into binding of remdesivir triphosphate within the replication–transcription complex of SARS-CoV-2, Biochemistry, 61, 1966-1973, https://doi.org/10.1021/acs.biochem.2c00341.
  18. Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., and Götte, M. (2020) Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, J. Biol. Chem., 295, 6785-6797, https://doi.org/10.1074/jbc. RA120.013679.
  19. Gordon, C. J., Tchesnokov, E. P., Schinazi, R. F., and Götte, M. (2021) Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template, J. Biol. Chem., 297, 100770, https://doi.org/10.1016/j.jbc.2021.100770.
  20. Tchesnokov, E. P., Gordon, C. J., Woolner, E., Kocinkova, D., Perry, J. K., Feng, J. Y., Porter, D. P., and Götte, M. (2020) Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action, J. Biol. Chem., 295, 16156-16165, https://doi.org/10.1074/jbc. AC120.015720.
  21. Luo, X., Wang, X., Yao, Y., Gao, X., and Zhang, L. (2022) Unveiling the “template-dependent” inhibition on the viral transcription of SARS-CoV-2, J. Phys. Chem. Lett., 13, 7197-7205, https://doi.org/10.1021/acs.jpclett.2c01314.
  22. Apostle, A., Yin, Y., Chillar, K., Eriyagama, A., Arneson, R., Burke, E., Fang, S., and Yuan, Y. (2023) Effects of epitranscriptomic RNA modifications on the catalytic activity of the SARS-CoV-2 replication complex, Chembiochem, 24, https://doi.org/10.1002/cbic.202300095.
  23. Iyer, L. M., and Aravind, L. (2012) Insights from the architecture of the bacterial transcription apparatus, J. Struct. Biol., 179, 299-319, https://doi.org/10.1016/j.jsb.2011.12.013.
  24. Steitz, T. A. (1998) A mechanism for all polymerases, Nature, 391, 231-232, https://doi.org/10.1038/34542.
  25. Sosunov, V., Sosunova, E., Mustaev, A., Bass, I., Nikiforov, V., and Goldfarb, A. (2003) Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase, EMBO J., 22, 2234-2244, https://doi.org/10.1093/emboj/cdg193.
  26. James, K., Gamba, P., Cockell, S. J., and Zenkin, N. (2017) Misincorporation by RNA polymerase is a major source of transcription pausing in vivo, Nucleic Acids Res., 45, 1105-1113, https://doi.org/10.1093/nar/gkw969.
  27. Imashimizu, M., Oshima, T., Lubkowska, L., and Kashlev, M. (2013) Direct assessment of transcription fidelity by high-resolution RNA sequencing, Nucleic Acids Res., 41, 9090-9104, https://doi.org/10.1093/nar/gkt698.
  28. Mäkinen, J., Shin, Y., Vieras, E., Virta, P., Metsä-Ketelä, M., Murakami, K., and Belogurov, G. (2021) The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases, Nat. Commun., 12, https://doi.org/10.1038/s41467-021-21005-w.
  29. Nedialkov, Y. A., and Burton, Z. F. (2013) Translocation and fidelity of Escherichia coli RNA polymerase, Transcription, 4, 136-143, https://doi.org/10.4161/trns.25527.
  30. Nudler, E., Gusarov, I., and Bar-Nahum, G. (2003) Methods of Walking with the RNA Polymerase, in Methods in Enzymology, Academic Press, pp. 160-169.
  31. Agapov, A., Olina, A., and Kulbachinskiy, A. (2022) RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences, Nucleic Acids Res., 50, 3018-3041, https://doi.org/10.1093/nar/gkac174.
  32. Gehring, A. M., and Santangelo, T. J. (2017) Archaeal RNA polymerase arrests transcription at DNA lesions, Transcription, 8, 288-296, https://doi.org/10.1080/21541264.2017.1324941.
  33. Pupov, D., Ignatov, A., Agapov, A., and Kulbachinskiy, A. (2019) Distinct effects of DNA lesions on RNA synthesis by Escherichia coli RNA polymerase, Biochem. Biophys. Res. Commun., 510, 122-127, https://doi.org/10.1016/ j.bbrc.2019.01.062.
  34. Guseva, E. A., Kamzeeva, P. N., Sokolskaya, S. Y., Slushko, G. K., Belyaev, E. S., Myasnikov, B. P., Golubeva, J. A., Alferova, V. A., Sergiev, P. V., and Aralov, A. V. (2024) Modified (2′-deoxy)adenosines activate autophagy primarily through AMPK/ULK1-dependent pathway, Bioorg. Med. Chem. Lett., 113, 129980, https://doi.org/10.1016/ j.bmcl.2024.129980.
  35. Svetlov, V., and Artsimovitch, I. (2015) Purification of bacterial RNA polymerase: tools and protocols, Methods Mol. Biol., 1276, 13-29, https://doi.org/10.1007/978-1-4939-2392-2_2.
  36. Kore, A. R., Shanmugasundaram, M., Senthilvelan, A., and Srinivasan, B. (2012) Gram-scale chemical synthesis of 2′-deoxynucleoside-5′-O-triphosphates, Curr. Protocols Nucleic Acid Chem., 49, 13.10.11-13.10.12, https:// doi.org/10.1002/0471142700.nc1310s49.
  37. Kamzeeva, P., Petushkov, I., Knizhnik, E., Snoeck, R., Khodarovich, Y., Ryabukhina, E., Alferova, V., Eshtukov-Shcheglov, A., Belyaev, E., Svetlova, J., Vedekhina, T., Kulbachinskiy, A., Varizhuk, A., Andrei, G., and Aralov, A. (2023) Phenotypic test of benzo[4,5]imidazo[1,2-c]pyrimidinone-based nucleoside and non-nucleoside derivatives against DNA and RNA viruses, including coronaviruses, Int. J. Mol. Sci., 24, 14540, https://doi.org/ 10.3390/ijms241914540.
  38. Miropolskaya, N., Kozlov, M., Petushkov, I., Prostova, M., Pupov, D., Esyunina, D., Kochetkov, S., and Kulbachinskiy, A. (2023) Effects of natural polymorphisms in SARS-CoV-2 RNA-dependent RNA polymerase on its activity and sensitivity to inhibitors in vitro, Biochimie, 206, 81-88, https://doi.org/10.1016/j.biochi. 2022.10.007.
  39. Matyugina, E., Petushkov, I., Surzhikov, S., Kezin, V., Maslova, A., Ivanova, O., Smirnova, O., Kirillov, I., Fedyakina, I., Kulbachinskiy, A., Kochetkov, S., and Khandazhinskaya, A. (2023) Nucleoside analogs that inhibit SARS-CoV-2 replication by blocking interaction of virus polymerase with RNA, Int. J. Mol. Sci., 24, 3361, https://doi.org/10.3390/ijms24043361.
  40. Zhilina, E., Miropolskaya, N., Bass, I., Brodolin, K., and Kulbachinskiy, A. (2011) Characteristics of sigma-dependent pausing in RNA polymerases from E. coli and T. aquaticus, Biochemistry (Moscow), 76, 1348-1358, https://doi.org/10.1134/S0006297911100038.
  41. Zhilina, E., Esyunina, D., Brodolin, K., and Kulbachinskiy, A. (2012) Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during sigma-dependent pausing, Nucleic Acids Res., 40, 3078-3091, https://doi.org/10.1093/nar/gkr1158.
  42. Petushkov, I., Esyunina, D., and Kulbachinskiy, A. (2017) σ38-dependent promoter-proximal pausing by bacterial RNA polymerase, Nucleic Acids Res., 45, 3006-3016, https://doi.org/10.1093/nar/gkw1213.
  43. Leonard, G. A., Guy, A., Brown, T., Teoule, R., and Hunter, W. N. (1992) Conformation of guanine-8-oxoadenine base pairs in the crystal structure of d(CGCGAATT(O8A)GCG), Biochemistry, 31, 8415-8420, https://doi.org/10.1021/bi00151a004.
  44. Arnold, J. J., and Cameron, C. E. (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+, Biochemistry, 43, 5126-5137, https://doi.org/10.1021/bi035212y.
  45. Arnold, J. J., Gohara, D. W., and Cameron, C. E. (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+, Biochemistry, 43, 5138-5148, https://doi.org/10.1021/bi035213q.
  46. Huang, Y., Beaudry, A., McSwiggen, J., and Sousa, R. (1997) Determinants of ribose specificity in RNA polymerization: effects of Mn2+ and deoxynucleoside monophosphate incorporation into transcripts, Biochemistry, 36, 13718-13728, https://doi.org/10.1021/bi971609o.
  47. Ranjith-Kumar, C. T., Kim, Y. C., Gutshall, L., Silverman, C., Khandekar, S., Sarisky, R. T., and Kao, C. C. (2002) Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals, J. Virol., 76, 12513-12525, https://doi.org/10.1128/jvi.76.24.12513-12525.2002.
  48. Te Velthuis, A. J. W., Arnold, J. J., Cameron, C. E., van den Worm, S. H. E., and Snijder, E. J. (2009) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent, Nucleic Acids Res., 38, 203-214, https:// doi.org/10.1093/nar/gkp904.
  49. Gottesman, M. E., Chudaev, M., and Mustaev, A. (2020) Key features of magnesium that underpin its role as the major ion for electrophilic biocatalysis, FEBS J., 287, 5439-5463, https://doi.org/10.1111/febs.15318.
  50. Poranen, M. M., Salgado, P. S., Koivunen, M. R. L., Wright, S., Bamford, D. H., Stuart, D. I., and Grimes, J. M. (2008) Structural explanation for the role of Mn2+ in the activity of ϕ6 RNA-dependent RNA polymerase, Nucleic Acids Res., 36, 6633-6644, https://doi.org/10.1093/nar/gkn632.
  51. Vassylyev, D. G., Vassylyeva, M. N., Zhang, J., Palangat, M., Artsimovitch, I., and Landick, R. (2007) Structural basis for substrate loading in bacterial RNA polymerase, Nature, 448, 163-168, https://doi.org/10.1038/ nature05931.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the oxo-εA modification (a), chemical synthesis of oxo-εATP (b) and putative pairs oxo-εA:A, oxo-εA:G and oxo-A:G (c)

Download (196KB)
3. Fig. 2. Analysis of oxo-εATP incorporation of SARS-CoV-2 RdRp. a – Schematic of the RNA substrate used in the experiments. The RNA primer is shown in red, the RNA template is shown in black, the first template base is marked “+1”. The residues incorporated by RdRp upon primer extension are shown in gray (the 7 residues incorporated upon addition of a limited set of NTPs are shown), the direction of transcription is indicated by an arrow. b – Analysis of RdRp transcription products in the presence of different sets of NTPs and oxo-εATP upon addition of Mg2+ (left panel) and Mn2+ (right panel) ions. Control samples incubated without NTPs are marked with a “−” sign. The length of RNA products in nucleotides is indicated on the right. Electropherogram of transcription products in 15% PAGE under denaturing conditions

Download (417KB)
4. Fig. 3. Incorporation of oxo-εATP RdRp onto RNA substrates with a variable template base at the +1 position. a – Schematic of the RNA substrates used in the experiments. The RNA primer is shown in red, the RNA template is shown in black. The variable template base at the +1 position (X) is highlighted in yellow, the residue inserted opposite it (Y) and the following three residues are shown in gray. b – Analysis of RdRp transcription products in the presence of natural NTP and/or oxo-εATP upon addition of Mg2+ ions. The control sample, which was incubated without NTP, is marked with the “−” sign. Reactions were carried out with RNA templates containing residues A, G, C or U at the +1 position. c – Analysis of RdRp transcription products in the presence of natural NTP and/or oxo-εATP with the addition of Mn2+ ions by analogy with panel b. Electropherograms of transcription products in 15% PAGE under denaturing conditions. The length of RNA products in nucleotides is indicated on the right

Download (483KB)
5. Fig. 4. Analysis of oxo-εATP incorporation of E. coli RNAP. a – Schematic of the elongation complex used in the experiments. The RNA oligonucleotide is shown in red, the template DNA strand is shown in black, and the non-template strand is shown in blue. The start point of nucleotide residue incorporation (+1) is shown, the first 4 incorporated nucleotide residues are marked in gray, and the direction of transcription is indicated by an arrow. b – Analysis of transcription products in the presence of different sets of NTP and oxo-εATP upon addition of Mg2+ (left panel) and Mn2+ (right panel) ions. Control samples incubated without NTP are marked with a “−” sign. Electropherogram of transcription products in 15% PAGE under denaturing conditions. The length of RNA products in nucleotides is marked on the right.

Download (598KB)
6. Fig. 5. Analysis of the passage of oxo-εA residue in the template DNA strand by E. coli RNAP. a – Schematic diagram of the elongation complex used in the experiments. The RNA oligonucleotide is shown in red, the template strand in black, and the non-template strand in blue. The position of oxo-εA or control dA is marked with the letter X and highlighted in yellow. The start point of nucleotide inclusion (+1) is shown, the first 4 incorporated nucleotide residues are marked in gray, and the letter Y indicates the residue incorporated opposite to oxo-εA or dA. b – Analysis of transcription products upon RNAP passage through oxo-εA at the +2 position of the template strand (left panel) or through the control dA (right panel). The control sample, which was incubated without NTP, is marked with a “−” sign. Electropherogram of transcription products in 15% PAAG under denaturing conditions. The length of RNA products in nucleotides is indicated on the right

Download (555KB)
7. Appendix
Download (156KB)

Copyright (c) 2024 Russian Academy of Sciences