Effect of 8-oxo-1,N6-ethenoadenine derivatives on the activity of RNA polymerases of the SARS-CoV-2 virus and Escherichia coli
- Authors: Petushkov I.V.1,2, Aralov A.V.3,4, Ivanov I.A.3,5, Baranov M.S.3,6, Zatsepin T.S.7, Kulbachinskiy A.V.1,2
-
Affiliations:
- National Research Centre “Kurchatov Institute”
- Institute of Gene Biology, Russian Academy of Sciences
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- RUDN University
- LLC “Organicum”
- Pirogov Russian National Research Medical University
- Lomonosov Moscow State University
- Issue: Vol 89, No 12 (2024)
- Pages: 2132-2144
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/677487
- DOI: https://doi.org/10.31857/S0320972524120099
- EDN: https://elibrary.ru/IFBLLS
- ID: 677487
Cite item
Abstract
Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-εA), a synthetic compound that is a combination of two modifications of adenine: 8-oxoadenine and 1,N6-ethenoadenine. In this study we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by RNA-dependent RNA polymerase of the SARS-CoV-2 virus into the synthesized RNA opposite template residues A and G in the presence of Mn2+ ions. In the case of Escherichia coli RNA polymerase, the incorporation occurred opposite A residues in the template DNA strand. If oxo-εA was present instead of adenine in the template DNA strand, transcription was completely stopped at the site of modification. At the same time, oxo-εATP did not suppress RNA synthesis by both RNA polymerases in the presence of unmodified nucleotides. Thus, oxo-εA modification significantly disrupts the template properties of the nucleotide during RNA synthesis by RNA polymerases of different classes, and the corresponding nucleotide derivatives are not potential antiviral or antibacterial transcription inhibitors.
Full Text

About the authors
I. V. Petushkov
National Research Centre “Kurchatov Institute”; Institute of Gene Biology, Russian Academy of Sciences
Author for correspondence.
Email: telomer1@rambler.ru
Russian Federation, 123182 Moscow; 119334 Moscow
A. V. Aralov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; RUDN University
Email: telomer1@rambler.ru
Russian Federation, 117997 Moscow; 117198 Moscow
I. A. Ivanov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; LLC “Organicum”
Email: telomer1@rambler.ru
Russian Federation, 117997 Moscow; 127486 Moscow
M. S. Baranov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Pirogov Russian National Research Medical University
Email: telomer1@rambler.ru
Russian Federation, 117997 Moscow; 117997 Moscow
T. S. Zatsepin
Lomonosov Moscow State University
Email: telomer1@rambler.ru
Faculty of Chemistry
Russian Federation, 119991 MoscowA. V. Kulbachinskiy
National Research Centre “Kurchatov Institute”; Institute of Gene Biology, Russian Academy of Sciences
Email: avkulb@yandex.ru
Russian Federation, 123182 Moscow; 119334 Moscow
References
- Aralov, A. V., Gubina, N., Cabrero, C., Tsvetkov, V. B., Turaev, A. V., Fedeles, B. I., Croy, R. G., Isaakova, E. A., Melnik, D., Dukova, S., Ryazantsev, D. Y., Khrulev, A. A., Varizhuk, A. M., Gonzalez, C., Zatsepin, T. S., and Essigmann, J. M. (2022) 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A-->T transversions in Escherichia coli, Nucleic Acids Res., 50, 3056-3069, https:// doi.org/10.1093/nar/gkac148.
- Kim, D., Lee, J.-Y., Yang, J.-S., Kim, J. W., Kim, V. N., and Chang, H. (2020) The architecture of SARS-CoV-2 transcriptome, Cell, 181, 914-921.e910, https://doi.org/10.1016/j.cell.2020.04.011.
- Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., and Cramer, P. (2020) Structure of replicating SARS-CoV-2 polymerase, Nature, 584, 154-156, https://doi.org/10.1038/s41586-020-2368-8.
- Shannon, A., Selisko, B., Le, N. T., Huchting, J., Touret, F., Piorkowski, G., Fattorini, V., Ferron, F., Decroly, E., Meier, C., Coutard, B., Peersen, O., and Canard, B. (2020) Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis, Nat. Commun., 11, 4682, https://doi.org/10.1038/s41467-020-18463-z.
- Yin, X., Popa, H., Stapon, A., Bouda, E., and Garcia-Diaz, M. (2023) Fidelity of ribonucleotide incorporation by the SARS-CoV-2 replication complex, J. Mol. Biol., 435, 167973, https://doi.org/10.1016/j.jmb.2023.167973.
- Moeller, N. H., Shi, K., Demir, O., Belica, C., Banerjee, S., Yin, L., Durfee, C., Amaro, R. E., and Aihara, H. (2022) Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN, Proc. Natl. Acad. Sci. USA, 119, https://doi.org/10.1073/pnas.2106379119.
- Drake, J. W., and Holland, J. J. (1999) Mutation rates among RNA viruses, Proc. Natl. Acad. Sci. USA, 96, 13910-13913, https://doi.org/10.1073/pnas.96.24.13910.
- Jenkins, G. M., Rambaut, A., Pybus, O. G., and Holmes, E. C. (2002) Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis, J. Mol. Evol., 54, 156-165, https://doi.org/10.1007/s00239-001-0064-3.
- Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., and Belshaw, R. (2010) Viral mutation rates, J. Virol., 84, 9733-9748, https://doi.org/10.1128/JVI.00694-10.
- Jones, A. N., Mourao, A., Czarna, A., Matsuda, A., Fino, R., Pyrc, K., Sattler, M., and Popowicz, G. M. (2022) Characterization of SARS-CoV-2 replication complex elongation and proofreading activity, Sci. Rep., 12, 9593, https://doi.org/10.1038/s41598-022-13380-1.
- Petushkov, I., Esyunina, D., and Kulbachinskiy, A. (2023) Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase, FEBS J., 290, 80-92, https://doi.org/10.1111/febs.16587.
- Sacramento, C. Q., Fintelman-Rodrigues, N., Temerozo, J. R., da Silva, A. P. D., Dias, S., da Silva, C. D. S., Ferreira, A. C., Mattos, M., Pao, C. R. R., de Freitas, C. S., Soares, V. C., Hoelz, L. V. B., Fernandes, T. V. A., Branco, F. S. C., Bastos, M. M., Boechat, N., Saraiva, F. B., Ferreira, M. A., Jockusch, S., Wang, X., Tao, C., Chien, M., Xie, W., Patel, D., et al. (2021) In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19, J. Antimicrob. Chemother., 76, 1874-1885, https://doi.org/ 10.1093/jac/dkab072.
- Jockusch, S., Tao, C., Li, X., Chien, M., Kumar, S., Morozova, I., Kalachikov, S., Russo, J. J., and Ju, J. (2020) Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir, Sci. Rep., 10, 16577, https://doi.org/10.1038/s41598-020-73641-9.
- Kokic, G., Hillen, H. S., Tegunov, D., Dienemann, C., Seitz, F., Schmitzova, J., Farnung, L., Siewert, A., Hobartner, C., and Cramer, P. (2021) Mechanism of SARS-CoV-2 polymerase stalling by remdesivir, Nat. Commun., 12, 279, https://doi.org/10.1038/s41467-020-20542-0.
- Yin, W. M. C., Luan, X., Shen, D. D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y. C., Tian, G., Jiang, H. W., Tao, S. C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., Zhang, S., Zhang, Y., and Xu, H. E. (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir, Science, 368, 1499-1504, https://doi.org/10.1126/science.abc1560.
- Kabinger, F. S. C., Schmitzová, J., Dienemann, C., Kokic, G., Hillen, H. S., Höbartner, C., and Cramer, P. (2021) Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat. Struct. Mol. Biol., 28, 740-746, https:// doi.org/10.1038/s41594-021-00651-0.
- Wang, J., Shi, Y., Reiss, K., Maschietto, F., Lolis, E., Konigsberg, W. H., Lisi, G. P., and Batista, V. S. (2022) Structural insights into binding of remdesivir triphosphate within the replication–transcription complex of SARS-CoV-2, Biochemistry, 61, 1966-1973, https://doi.org/10.1021/acs.biochem.2c00341.
- Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., and Götte, M. (2020) Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, J. Biol. Chem., 295, 6785-6797, https://doi.org/10.1074/jbc. RA120.013679.
- Gordon, C. J., Tchesnokov, E. P., Schinazi, R. F., and Götte, M. (2021) Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template, J. Biol. Chem., 297, 100770, https://doi.org/10.1016/j.jbc.2021.100770.
- Tchesnokov, E. P., Gordon, C. J., Woolner, E., Kocinkova, D., Perry, J. K., Feng, J. Y., Porter, D. P., and Götte, M. (2020) Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action, J. Biol. Chem., 295, 16156-16165, https://doi.org/10.1074/jbc. AC120.015720.
- Luo, X., Wang, X., Yao, Y., Gao, X., and Zhang, L. (2022) Unveiling the “template-dependent” inhibition on the viral transcription of SARS-CoV-2, J. Phys. Chem. Lett., 13, 7197-7205, https://doi.org/10.1021/acs.jpclett.2c01314.
- Apostle, A., Yin, Y., Chillar, K., Eriyagama, A., Arneson, R., Burke, E., Fang, S., and Yuan, Y. (2023) Effects of epitranscriptomic RNA modifications on the catalytic activity of the SARS-CoV-2 replication complex, Chembiochem, 24, https://doi.org/10.1002/cbic.202300095.
- Iyer, L. M., and Aravind, L. (2012) Insights from the architecture of the bacterial transcription apparatus, J. Struct. Biol., 179, 299-319, https://doi.org/10.1016/j.jsb.2011.12.013.
- Steitz, T. A. (1998) A mechanism for all polymerases, Nature, 391, 231-232, https://doi.org/10.1038/34542.
- Sosunov, V., Sosunova, E., Mustaev, A., Bass, I., Nikiforov, V., and Goldfarb, A. (2003) Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase, EMBO J., 22, 2234-2244, https://doi.org/10.1093/emboj/cdg193.
- James, K., Gamba, P., Cockell, S. J., and Zenkin, N. (2017) Misincorporation by RNA polymerase is a major source of transcription pausing in vivo, Nucleic Acids Res., 45, 1105-1113, https://doi.org/10.1093/nar/gkw969.
- Imashimizu, M., Oshima, T., Lubkowska, L., and Kashlev, M. (2013) Direct assessment of transcription fidelity by high-resolution RNA sequencing, Nucleic Acids Res., 41, 9090-9104, https://doi.org/10.1093/nar/gkt698.
- Mäkinen, J., Shin, Y., Vieras, E., Virta, P., Metsä-Ketelä, M., Murakami, K., and Belogurov, G. (2021) The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases, Nat. Commun., 12, https://doi.org/10.1038/s41467-021-21005-w.
- Nedialkov, Y. A., and Burton, Z. F. (2013) Translocation and fidelity of Escherichia coli RNA polymerase, Transcription, 4, 136-143, https://doi.org/10.4161/trns.25527.
- Nudler, E., Gusarov, I., and Bar-Nahum, G. (2003) Methods of Walking with the RNA Polymerase, in Methods in Enzymology, Academic Press, pp. 160-169.
- Agapov, A., Olina, A., and Kulbachinskiy, A. (2022) RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences, Nucleic Acids Res., 50, 3018-3041, https://doi.org/10.1093/nar/gkac174.
- Gehring, A. M., and Santangelo, T. J. (2017) Archaeal RNA polymerase arrests transcription at DNA lesions, Transcription, 8, 288-296, https://doi.org/10.1080/21541264.2017.1324941.
- Pupov, D., Ignatov, A., Agapov, A., and Kulbachinskiy, A. (2019) Distinct effects of DNA lesions on RNA synthesis by Escherichia coli RNA polymerase, Biochem. Biophys. Res. Commun., 510, 122-127, https://doi.org/10.1016/ j.bbrc.2019.01.062.
- Guseva, E. A., Kamzeeva, P. N., Sokolskaya, S. Y., Slushko, G. K., Belyaev, E. S., Myasnikov, B. P., Golubeva, J. A., Alferova, V. A., Sergiev, P. V., and Aralov, A. V. (2024) Modified (2′-deoxy)adenosines activate autophagy primarily through AMPK/ULK1-dependent pathway, Bioorg. Med. Chem. Lett., 113, 129980, https://doi.org/10.1016/ j.bmcl.2024.129980.
- Svetlov, V., and Artsimovitch, I. (2015) Purification of bacterial RNA polymerase: tools and protocols, Methods Mol. Biol., 1276, 13-29, https://doi.org/10.1007/978-1-4939-2392-2_2.
- Kore, A. R., Shanmugasundaram, M., Senthilvelan, A., and Srinivasan, B. (2012) Gram-scale chemical synthesis of 2′-deoxynucleoside-5′-O-triphosphates, Curr. Protocols Nucleic Acid Chem., 49, 13.10.11-13.10.12, https:// doi.org/10.1002/0471142700.nc1310s49.
- Kamzeeva, P., Petushkov, I., Knizhnik, E., Snoeck, R., Khodarovich, Y., Ryabukhina, E., Alferova, V., Eshtukov-Shcheglov, A., Belyaev, E., Svetlova, J., Vedekhina, T., Kulbachinskiy, A., Varizhuk, A., Andrei, G., and Aralov, A. (2023) Phenotypic test of benzo[4,5]imidazo[1,2-c]pyrimidinone-based nucleoside and non-nucleoside derivatives against DNA and RNA viruses, including coronaviruses, Int. J. Mol. Sci., 24, 14540, https://doi.org/ 10.3390/ijms241914540.
- Miropolskaya, N., Kozlov, M., Petushkov, I., Prostova, M., Pupov, D., Esyunina, D., Kochetkov, S., and Kulbachinskiy, A. (2023) Effects of natural polymorphisms in SARS-CoV-2 RNA-dependent RNA polymerase on its activity and sensitivity to inhibitors in vitro, Biochimie, 206, 81-88, https://doi.org/10.1016/j.biochi. 2022.10.007.
- Matyugina, E., Petushkov, I., Surzhikov, S., Kezin, V., Maslova, A., Ivanova, O., Smirnova, O., Kirillov, I., Fedyakina, I., Kulbachinskiy, A., Kochetkov, S., and Khandazhinskaya, A. (2023) Nucleoside analogs that inhibit SARS-CoV-2 replication by blocking interaction of virus polymerase with RNA, Int. J. Mol. Sci., 24, 3361, https://doi.org/10.3390/ijms24043361.
- Zhilina, E., Miropolskaya, N., Bass, I., Brodolin, K., and Kulbachinskiy, A. (2011) Characteristics of sigma-dependent pausing in RNA polymerases from E. coli and T. aquaticus, Biochemistry (Moscow), 76, 1348-1358, https://doi.org/10.1134/S0006297911100038.
- Zhilina, E., Esyunina, D., Brodolin, K., and Kulbachinskiy, A. (2012) Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during sigma-dependent pausing, Nucleic Acids Res., 40, 3078-3091, https://doi.org/10.1093/nar/gkr1158.
- Petushkov, I., Esyunina, D., and Kulbachinskiy, A. (2017) σ38-dependent promoter-proximal pausing by bacterial RNA polymerase, Nucleic Acids Res., 45, 3006-3016, https://doi.org/10.1093/nar/gkw1213.
- Leonard, G. A., Guy, A., Brown, T., Teoule, R., and Hunter, W. N. (1992) Conformation of guanine-8-oxoadenine base pairs in the crystal structure of d(CGCGAATT(O8A)GCG), Biochemistry, 31, 8415-8420, https://doi.org/10.1021/bi00151a004.
- Arnold, J. J., and Cameron, C. E. (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+, Biochemistry, 43, 5126-5137, https://doi.org/10.1021/bi035212y.
- Arnold, J. J., Gohara, D. W., and Cameron, C. E. (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+, Biochemistry, 43, 5138-5148, https://doi.org/10.1021/bi035213q.
- Huang, Y., Beaudry, A., McSwiggen, J., and Sousa, R. (1997) Determinants of ribose specificity in RNA polymerization: effects of Mn2+ and deoxynucleoside monophosphate incorporation into transcripts, Biochemistry, 36, 13718-13728, https://doi.org/10.1021/bi971609o.
- Ranjith-Kumar, C. T., Kim, Y. C., Gutshall, L., Silverman, C., Khandekar, S., Sarisky, R. T., and Kao, C. C. (2002) Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals, J. Virol., 76, 12513-12525, https://doi.org/10.1128/jvi.76.24.12513-12525.2002.
- Te Velthuis, A. J. W., Arnold, J. J., Cameron, C. E., van den Worm, S. H. E., and Snijder, E. J. (2009) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent, Nucleic Acids Res., 38, 203-214, https:// doi.org/10.1093/nar/gkp904.
- Gottesman, M. E., Chudaev, M., and Mustaev, A. (2020) Key features of magnesium that underpin its role as the major ion for electrophilic biocatalysis, FEBS J., 287, 5439-5463, https://doi.org/10.1111/febs.15318.
- Poranen, M. M., Salgado, P. S., Koivunen, M. R. L., Wright, S., Bamford, D. H., Stuart, D. I., and Grimes, J. M. (2008) Structural explanation for the role of Mn2+ in the activity of ϕ6 RNA-dependent RNA polymerase, Nucleic Acids Res., 36, 6633-6644, https://doi.org/10.1093/nar/gkn632.
- Vassylyev, D. G., Vassylyeva, M. N., Zhang, J., Palangat, M., Artsimovitch, I., and Landick, R. (2007) Structural basis for substrate loading in bacterial RNA polymerase, Nature, 448, 163-168, https://doi.org/10.1038/ nature05931.
Supplementary files
