A new approach for studying poly(ADP-ribose) polymerase inhibitors using permeabilized adherent cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Poly(ADP-ribose) polymerase (PARP) inhibitors have been proposed as pharmacological agents in the treatment of various diseases. Recently, factors and mechanisms responsible for regulating PARP catalytic activity have been identified, some of which can significantly influence the effectiveness of inhibitors of this enzyme. In this regard, it is important to develop new models and methods that would reflect the cellular context in which PARP functions. We proposed to use digitonin-permeabilized adherent cells to study poly(ADP-ribosyl)ation reaction (PARylation) in order to maintain the nuclear localization of PARP and to control the concentrations of its substrate (NAD+) and tested compounds in the cell. A specific feature of the approach is that before permeabilization, cellular PARP is converted to the DNA-bound state under conditions preventing premature initiation of the PARylation reaction. Experiments were carried out in rat H9c2 cardiomyoblasts. The activity of PARP in permeabilized cells was analyzed by measuring the immunofluorescence of the reaction product poly(ADP-ribose). The method was verified in the studies of PARP inhibition by the classic inhibitor 3-aminobenzamide and a number of new 7-methylguanine derivatives. One of them, 7,8-dimethylguanine, was found to be a stronger inhibitor compared to 7-methylguanine, due to a formation of additional hydrophobic contact with the protein. The proposed approach opens up new prospects for studying the mechanisms of PARP activity regulation in cells and can be used in high-throughput screening of PARP inhibitors.

Full Text

Restricted Access

About the authors

S. I. Shram

National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: shram.img@yandex.ru
Russian Federation, 123182 Moscow

T. A. Shcherbakova

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology

Email: shram.img@yandex.ru
Russian Federation, 119992 Moscow

T. V. Abramova

Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch

Email: shram.img@yandex.ru
Russian Federation, 630090 Novosibirsk

M. S. Smirnovskaya

Lomonosov Moscow State University

Email: shram.img@yandex.ru

Faculty of Chemistry

Russian Federation, 119991 Moscow

A. I. Balandina

National Research Centre “Kurchatov Institute”; Mendeleev University of Chemical Technology of Russia

Email: shram.img@yandex.ru

Faculty of Biotechnology and Industrial Ecology

Russian Federation, 123182 Moscow; 125047 Moscow

A. V. Kulikov

RUDN University

Email: shram.img@yandex.ru

Medical Institute

Russian Federation, 117198 Moscow

V. K. Švedas

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University

Email: shram.img@yandex.ru

Faculty of Bioengineering and Bioinformatics

Russian Federation, 119992 Moscow; 119234 Moscow

V. N. Silnikov

Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch

Email: shram.img@yandex.ru
Russian Federation, 630090 Novosibirsk

N. F. Myasoedov

National Research Centre “Kurchatov Institute”

Email: shram.img@yandex.ru
Russian Federation, 123182 Moscow

D. K. Nilov

Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology

Email: shram.img@yandex.ru
Russian Federation, 119992 Moscow

References

  1. Hassa, P. O., Haenni, S. S., Elser, M., and Hottiger, M. O. (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev., 70, 789-829, https://doi.org/10.1128/MMBR.00040-05.
  2. Шиловский Г. А., Хохлов А. Н., Шрам С. И. (2013) Cистема поли(ADP-рибозил)ирования белков: роль в поддержании стабильности генома и детерминации продолжительности жизни, Биохимия, 78, 473-487.
  3. Gupte, R., Liu, Z., and Kraus, W. L. (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes, Genes Dev., 31, 101-126, https://doi.org/10.1101/gad.291518.116.
  4. Kamaletdinova, T., Fanaei-Kahrani, Z., and Wang, Z. Q. (2019) The enigmatic function of PARP1: from PARylation activity to PAR readers, Cells, 8, 1625, https://doi.org/10.3390/cells8121625.
  5. Alemasova, E. E., and Lavrik, O. I. (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins, Nucleic Acids Res., 47, 3811-3827, https://doi.org/10.1093/nar/gkz120.
  6. Нилов Д. К., Пушкарев С. В., Гущина И. В., Манасарян Г. А., Кирсанов К. И., Швядас В. К. (2020) Моделирование фермент-субстратных комплексов поли(ADP-рибозо)полимеразы 1 человека, Биохимия, 85, 116-125, https://doi.org/10.31857/S0320972520010091.
  7. Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M. O., and Nielsen, M. L. (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses, Mol. Cell, 52, 272-285, https://doi.org/10.1016/j.molcel.2013.08.026.
  8. Hoch, N. C., and Polo, L. M. (2019) ADP-ribosylation: from molecular mechanisms to human disease, Genet. Mol. Biol., 43, e20190075, https://doi.org/10.1590/1678-4685-GMB-2019-0075.
  9. Manasaryan, G., Suplatov, D., Pushkarev, S., Drobot, V., Kuimov, A., Švedas, V., and Nilov, D. (2021) Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose) polymerase family proteins, Cancers (Basel), 13, 1201, https://doi.org/10.3390/cancers13061201.
  10. Lavrik, O. I. (2020) PARPs’ impact on base excision DNA repair, DNA Repair (Amst.), 93, 102911, https://doi.org/ 10.1016/j.dnarep.2020.102911.
  11. Gibson, B. A., and Kraus, W. L. (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs, Nat. Rev. Mol. Cell Biol., 13, 411-424, https://doi.org/10.1038/nrm3376.
  12. Grimaldi, G., and Corda, D. (2019) ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes, Biochem. Soc. Trans., 47, 357-370, https://doi.org/10.1042/BST20180416.
  13. Van Wijk, S. J., and Hageman, G. J. (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion, Free Radic. Biol. Med., 39, 81-90, https://doi.org/10.1016/j.freeradbiomed.2005.03.021.
  14. Virág, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M., and Oliver, F. J. (2013) Poly(ADP-ribose) signaling in cell death, Mol. Aspects Med., 34, 1153-1167, https://doi.org/10.1016/j.mam.2013.01.007.
  15. Liu, S., Luo, W., and Wang, Y. (2022) Emerging role of PARP-1 and PARthanatos in ischemic stroke, J. Neurochem., 160, 74-87, https://doi.org/10.1111/jnc.15464.
  16. Pacher, P., and Szabó, C. (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors, Cardiovasc. Drug Rev., 25, 235-260, https://doi.org/10.1111/ j.1527-3466.2007.00018.x.
  17. Narne, P., Pandey, V., Simhadri, P. K., and Phanithi, P. B. (2017) Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: the death knell tolls for neurons, Semin. Cell Dev. Biol., 63, 154-166, https:// doi.org/10.1016/j.semcdb.2016.11.007.
  18. Berger, N. A., Besson, V. C., Boulares, A. H., Bürkle, A., Chiarugi, A., Clark, R. S., Curtin, N. J., Cuzzocrea, S., Dawson, T. M., Dawson, V. L., Haskó, G., Liaudet, L., Moroni, F., Pacher, P., Radermacher, P., Salzman, A. L., Snyder, S. H., Soriano, F. G., Strosznajder, R. P., Sümegi, B., Swanson, R. A., and Szabo, C. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases, Br. J. Pharmacol., 175, 192-222, https://doi.org/10.1111/bph.13748.
  19. Ke, Y., Wang, C., Zhang, J., Zhong, X., Wang, R., Zeng, X., and Ba, X. (2019) The role of PARPs in inflammation-and metabolic-related diseases: molecular mechanisms and beyond, Cells, 8, 1047, https://doi.org/10.3390/cells8091047.
  20. Rose, M., Burgess, J. T., O’Byrne, K., Richard, D. J., and Bolderson, E. (2020) PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance, Front. Cell Dev. Biol., 8, 564601, https://doi.org/10.3389/fcell.2020.564601.
  21. Slade, D. (2020) PARP and PARG inhibitors in cancer treatment, Genes Dev., 34, 360-394, https://doi.org/10.1101/gad.334516.119.
  22. Bruin, M. A. C., Sonke, G. S., and Beijnen, J. H. (2022) Pharmacokinetics and pharmacodynamics of PARP inhibitors in oncology, Clin. Pharmacokinet., 61, 1649-1675, https://doi.org/10.1007/s40262-022-01167-6.
  23. Flippot, R., Patrikidou, A., Aldea, M., Colomba, E., Lavaud, P., Albigès, L., Naoun, N., Blanchard, P., Terlizzi, M., Garcia, C., Bernard-Tessier, A., Fuerea, A., Di Palma, M., Escudier, B., Loriot, Y., Baciarello, G., and Fizazi, K. (2022) PARP inhibition, a new therapeutic avenue in patients with prostate cancer, Drugs, 82, 719-733, https://doi.org/10.1007/s40265-022-01703-5.
  24. Kurgina, T. A., Moor, N. A., Kutuzov, M. M., Naumenko, K. N., Ukraintsev, A. A., and Lavrik, O. I. (2021) Dual function of HPF1 in the modulation of PARP1 and PARP2 activities, Commun. Biol., 4, 1259, https://doi.org/10.1038/s42003-021-02780-0.
  25. Piao, L., Fujioka, K., Nakakido, M., and Hamamoto, R. (2018) Regulation of poly(ADP-ribose) polymerase 1 functions by post-translational modifications, Front. Biosci. (Landmark Ed.), 23, 13-26, https://doi.org/10.2741/4578.
  26. Grube, K., Küpper, J. H., and Bürkle, A. (1991) Direct stimulation of poly(ADP ribose) polymerase in permeabilized cells by double-stranded DNA oligomers, Anal. Biochem., 193, 236-239, https://doi.org/10.1016/ 0003-2697(91)90015-l.
  27. Шрам С. И., Шиловский Г. А., Хохлов А. Н. (2006) Поли(АДФ-рибоза)-полимераза-1 и старение: изучение возможной связи в экспериментах на стационарных клеточных культурах, Бюлл. эксп. биол. и мед., 141, 567-571.
  28. Althaus, F. R., Lawrence, S. D., Sattler, G. L., and Pitot, H. C. (1982) ADP-ribosyltransferase activity in cultured hepatocytes. Interactions with DNA repair, J. Biol. Chem., 257, 5528-5535, https://doi.org/10.1016/S0021-9258(19)83809-7.
  29. Muiras, M. L., Müller, M., Schächter, F., and Bürkle, A. (1998) Increased poly(ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians, J. Mol. Med. (Berl.), 76, 346-354, https://doi.org/10.1007/s001090050226.
  30. Nilov, D., Maluchenko, N., Kurgina, T., Pushkarev, S., Lys, A., Kutuzov, M., Gerasimova, N., Feofanov, A., Švedas, V., Lavrik, O., and Studitsky, V. M. (2020) Molecular mechanisms of PARP-1 inhibitor 7-methylguanine, Int. J. Mol. Sci., 21, 2159, https://doi.org/10.3390/ijms21062159.
  31. Кургина Т. А., Шрам С. И., Кутузов М. М., Абрамова Т. В., Щербакова Т. А., Мальцева Е. А., Поройков В. В., Лаврик О. И., Швядас В. К., Нилов Д. К. (2022) Ингибиторное действие 7-метилгуанина и его метаболита 8-гидрокси-7-метилгуанина на поли(ADP-рибозо)полимеразу 1 человека, Биохимия, 87, 794-803, https://X/10.31857/S0320972522060070.
  32. Kirsanov, K., Fetisov, T., Antoshina, E., Trukhanova, L., Gor’kova, T., Vlasova, O., Khitrovo, I., Lesovaya, E., Kulbachevskaya, N., Shcherbakova, T., Belitsky, G., Yakubovskaya, M., Švedas, V., and Nilov, D. (2022) Toxicological properties of 7-methylguanine, and preliminary data on its anticancer activity, Front. Pharmacol., 13, 842316, https://doi.org/10.3389/fphar.2022.842316.
  33. Шрам С. И., Щербакова Т. А., Абрамова Т. В., Барадиева Э. Ц., Ефремова А. С., Смирновская М. С., Сильников В. Н., Швядас В. К., Нилов Д. К. (2023) Природные производные гуанина оказывают PARP-ингибиторное и цитопротекторное действие на модели повреждения кардиомиоцитов при окислительном стрессе, Биохимия, 88, 962-972, https://doi.org/10.31857/S0320972523060064.
  34. Gushchina, I. V., Polenova, A. M., Suplatov, D. A., Švedas, V. K., and Nilov, D. K. (2020) vsFilt: a tool to improve virtual screening by structural filtration of docking poses, J. Chem. Inf. Model., 60, 3692-3696, https://doi.org/10.1021/acs.jcim.0c00303.
  35. Stroganov, O. V., Novikov, F. N., Stroylov, V. S., Kulkov, V., and Chilov, G. G. (2008) Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening, J. Chem. Inf. Model., 48, 2371-2385, https://doi.org/10.1021/ci800166p.
  36. Novikov, F. N., Stroylov, V. S., Zeifman, A. A., Stroganov, O. V., Kulkov, V., and Chilov, G. G. (2012) Lead Finder docking and virtual screening evaluation with Astex and DUD test sets, J. Comput. Aided Mol. Des., 26, 725-735, https://doi.org/10.1007/s10822-012-9549-y.
  37. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics, J. Mol. Graph., 14, 33-38, https://doi.org/10.1016/0263-7855(96)00018-5.
  38. Fiskum, G., Craig, S. W., Decker, G. L., and Lehninger, A. L. (1980) The cytoskeleton of digitonin-treated rat hepatocytes, Proc. Natl. Acad. Sci. USA, 77, 3430-3434, https://doi.org/10.1073/pnas.77.6.3430.
  39. Schulz, I. (1990) Permeabilizing cells: some methods and applications for the study of intracellular processes, Methods Enzymol., 192, 280-300, https://doi.org/10.1016/0076-6879(90)92077-q.
  40. Esparís-Ogando, A., Zurzolo, C., and Rodriguez-Boulan, E. (1994) Permeabilization of MDCK cells with cholesterol binding agents: dependence on substratum and confluency, Am. J. Physiol., 267, C166-C176, https://doi.org/ 10.1152/ajpcell.1994.267.1.C166.
  41. Sudji, I. R., Subburaj, Y., Frenkel, N., García-Sáez, A. J., and Wink, M. (2015) Membrane disintegration caused by the steroid saponin digitonin is related to the presence of cholesterol, Molecules, 20, 20146-20160, https://doi.org/10.3390/molecules201119682.
  42. Adam, S. A., Marr, R. S., and Gerace, L. (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors, J. Cell Biol., 111, 807-816, https://doi.org/10.1083/jcb.111.3.807.
  43. Langelier, M. F., Zandarashvili, L., Aguiar, P. M., Black, B. E., and Pascal, J. M. (2018) NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains, Nat. Commun., 9, 844, https://doi.org/10.1038/s41467-018-03234-8.
  44. Clark, N. J., Kramer, M., Muthurajan, U. M., and Luger, K. (2012) Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes, J. Biol. Chem., 287, 32430-32439, https://doi.org/10.1074/ jbc.M112.397067.
  45. Sukhanova, M. V., Abrakhi, S., Joshi, V., Pastre, D., Kutuzov, M. M., Anarbaev, R. O., Curmi, P. A., Hamon, L., and Lavrik, O. I. (2015) Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging, Nucleic Acids Res., 44, e60, https://doi.org/10.1093/nar/gkv1476.
  46. Riccio, A. A., Cingolani, G., and Pascal, J. M. (2016) PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage, Nucleic Acids Res., 44, 1691-1702, https://doi.org/10.1093/ nar/gkv1376.
  47. Kutuzov, M. M., Belousova, E. A., Kurgina, T. A., Ukraintsev, A. A., Vasil’eva, I. A., Khodyreva, S. N., and Lavrik, O. I. (2021) The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context, Sci. Rep., 11, 4849, https://doi.org/10.1038/s41598-021-84351-1.
  48. Kim, M. Y., Mauro, S., Gévry, N., Lis, J. T., and Kraus, W. L. (2004) NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1, Cell, 119, 803-814, https://doi.org/10.1016/ j.cell.2004.11.002.
  49. Palazzo, L., Suskiewicz, M. J., and Ahel, I. (2021) Serine ADP-ribosylation in DNA-damage response regulation, Curr. Opin. Genet. Dev., 71, 106-113, https://doi.org/10.1016/j.gde.2021.07.005.
  50. Алемасова Е. Э., Науменко К. Н., Суханова М. В., Лаврик О. И. (2022) Роль YB-1 в регуляции процесса поли(АДФ-рибозил)ирования, катализируемого поли(АДФ-рибоза)полимеразами, Усп. Биол. Хим., 62, 63-98.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. Permeabilization of H9c2 cells by digitonin. a–b is a hypotonic solution without digitonin. g–e is a hypotonic solution with digitonin (35 microns). The nuclei of permeabilized cells are stained with ethidium III homodimer (a, b, g, e). The length of the scale strip corresponds to 100 microns. 10× Lens

Download (257KB)
3. Fig. 2. Effect of pretreatment of PJ34 and H2O2 cells on PARP activity in digitonin permeabilized H9c2 cells. a–z – Microfluorescence analysis of PAR content in cell nuclei (1-4 – various variants of the analyzed preparations). The length of the scale bar corresponds to 50 microns. The 20×. i lens is the results of the quantitative analysis of PAR in individual cores. Number of cores analyzed: 198 (1), 236 (2), 229 (3), 144 (4). The average and median values are reflected by the blue and red lines, respectively. k is the variation in the values of the PAR level when analyzing individual microfluorescence images of different drugs (mean ± standard deviation; n = 6). Reagent concentrations: PJ34 – 5 microns, H2O2 – 1 mM, digitonin – 35 microns, oligo-DNA – 50 mcg/ml, NAD+ – 10 microns; incubation time with H2O2 – 5 min; incubation time with NAD+ – 5 min. *** p < 0.001 between all pairs of samples (ANOVA analysis of variance/Bonferroni a posteriori analysis)

Download (421KB)
4. Fig. 3. Optimized scheme for the analysis of PARP activity in permeabilized adhered cells. 1 – Adhered intact cells; 2 – preincubation with PJ34 (5 microns, 1 hour, 37 °C, 5% CO2); 3 – treatment with H2O2 (1 mM, 5 min, 25 °C); 4 – formation of a PARP–DNA complex; 5 – permeabilization with digitonin (35 microns, 5 min, 0 °C); 6 – washing from digitonin, PJ34 and endogenous NAD+; 7 – incubation of permeabilized cells with exogenous NAD+ (10 microns) and the test compound (2-10 min, 25 °C); 8 – Protein methylation

Download (478KB)
5. 4. Chemical structures of 7-methylguanine and its derivatives

Download (120KB)
6. 5. Concentration dependences of PARP inhibition by the tested compounds in permeabilized H9c2 cells. Designations: 1 – 3-aminobenzamide; 2 – 7-methylguanine; 3 – 7,8-dimethylguanine; 4 – N2,7-dimethylguanine. Conditions: NAD+ – 10 microns; incubation time – 10 min; concentrations of 3-aminobenzamide and 7,8-dimethylguanine – 0,2, 1, 2,5, 5, 10, 25, 50, 100 microns; concentrations of 7-methylguanine and N2,7-dimethylguanine – 10, 25, 75, 100, 150, 200, 250, 400 microns

Download (91KB)
7. 6. Modeling of inhibitor binding in the active center of PARP1. a – 3-Aminobenzamide; b – 7-methylguanine; c – 7,8-dimethylguanine; d – N2,7-dimethylguanine. Nonpolar hydrogen atoms of amino acid residues are not shown. The dotted lines indicate the key hydrogen bonds with Gly863

Download (338KB)
8. Suppl.
Download (705KB)

Copyright (c) 2024 Russian Academy of Sciences