A new approach for studying poly(ADP-ribose) polymerase inhibitors using permeabilized adherent cells
- Authors: Shram S.I.1, Shcherbakova T.A.2, Abramova T.V.3, Smirnovskaya M.S.4, Balandina A.I.1,5, Kulikov A.V.6, Švedas V.K.2,4, Silnikov V.N.3, Myasoedov N.F.1, Nilov D.K.2
-
Affiliations:
- National Research Centre “Kurchatov Institute”
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch
- Lomonosov Moscow State University
- Mendeleev University of Chemical Technology of Russia
- RUDN University
- Issue: Vol 89, No 9 (2024)
- Pages: 1562-1575
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/676566
- DOI: https://doi.org/10.31857/S0320972524090079
- EDN: https://elibrary.ru/JJTFXZ
- ID: 676566
Cite item
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have been proposed as pharmacological agents in the treatment of various diseases. Recently, factors and mechanisms responsible for regulating PARP catalytic activity have been identified, some of which can significantly influence the effectiveness of inhibitors of this enzyme. In this regard, it is important to develop new models and methods that would reflect the cellular context in which PARP functions. We proposed to use digitonin-permeabilized adherent cells to study poly(ADP-ribosyl)ation reaction (PARylation) in order to maintain the nuclear localization of PARP and to control the concentrations of its substrate (NAD+) and tested compounds in the cell. A specific feature of the approach is that before permeabilization, cellular PARP is converted to the DNA-bound state under conditions preventing premature initiation of the PARylation reaction. Experiments were carried out in rat H9c2 cardiomyoblasts. The activity of PARP in permeabilized cells was analyzed by measuring the immunofluorescence of the reaction product poly(ADP-ribose). The method was verified in the studies of PARP inhibition by the classic inhibitor 3-aminobenzamide and a number of new 7-methylguanine derivatives. One of them, 7,8-dimethylguanine, was found to be a stronger inhibitor compared to 7-methylguanine, due to a formation of additional hydrophobic contact with the protein. The proposed approach opens up new prospects for studying the mechanisms of PARP activity regulation in cells and can be used in high-throughput screening of PARP inhibitors.
Full Text

About the authors
S. I. Shram
National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: shram.img@yandex.ru
Russian Federation, 123182 Moscow
T. A. Shcherbakova
Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology
Email: shram.img@yandex.ru
Russian Federation, 119992 Moscow
T. V. Abramova
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch
Email: shram.img@yandex.ru
Russian Federation, 630090 Novosibirsk
M. S. Smirnovskaya
Lomonosov Moscow State University
Email: shram.img@yandex.ru
Faculty of Chemistry
Russian Federation, 119991 MoscowA. I. Balandina
National Research Centre “Kurchatov Institute”; Mendeleev University of Chemical Technology of Russia
Email: shram.img@yandex.ru
Faculty of Biotechnology and Industrial Ecology
Russian Federation, 123182 Moscow; 125047 MoscowA. V. Kulikov
RUDN University
Email: shram.img@yandex.ru
Medical Institute
Russian Federation, 117198 MoscowV. K. Švedas
Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University
Email: shram.img@yandex.ru
Faculty of Bioengineering and Bioinformatics
Russian Federation, 119992 Moscow; 119234 MoscowV. N. Silnikov
Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch
Email: shram.img@yandex.ru
Russian Federation, 630090 Novosibirsk
N. F. Myasoedov
National Research Centre “Kurchatov Institute”
Email: shram.img@yandex.ru
Russian Federation, 123182 Moscow
D. K. Nilov
Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology
Email: shram.img@yandex.ru
Russian Federation, 119992 Moscow
References
- Hassa, P. O., Haenni, S. S., Elser, M., and Hottiger, M. O. (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev., 70, 789-829, https://doi.org/10.1128/MMBR.00040-05.
- Шиловский Г. А., Хохлов А. Н., Шрам С. И. (2013) Cистема поли(ADP-рибозил)ирования белков: роль в поддержании стабильности генома и детерминации продолжительности жизни, Биохимия, 78, 473-487.
- Gupte, R., Liu, Z., and Kraus, W. L. (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes, Genes Dev., 31, 101-126, https://doi.org/10.1101/gad.291518.116.
- Kamaletdinova, T., Fanaei-Kahrani, Z., and Wang, Z. Q. (2019) The enigmatic function of PARP1: from PARylation activity to PAR readers, Cells, 8, 1625, https://doi.org/10.3390/cells8121625.
- Alemasova, E. E., and Lavrik, O. I. (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins, Nucleic Acids Res., 47, 3811-3827, https://doi.org/10.1093/nar/gkz120.
- Нилов Д. К., Пушкарев С. В., Гущина И. В., Манасарян Г. А., Кирсанов К. И., Швядас В. К. (2020) Моделирование фермент-субстратных комплексов поли(ADP-рибозо)полимеразы 1 человека, Биохимия, 85, 116-125, https://doi.org/10.31857/S0320972520010091.
- Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M. O., and Nielsen, M. L. (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses, Mol. Cell, 52, 272-285, https://doi.org/10.1016/j.molcel.2013.08.026.
- Hoch, N. C., and Polo, L. M. (2019) ADP-ribosylation: from molecular mechanisms to human disease, Genet. Mol. Biol., 43, e20190075, https://doi.org/10.1590/1678-4685-GMB-2019-0075.
- Manasaryan, G., Suplatov, D., Pushkarev, S., Drobot, V., Kuimov, A., Švedas, V., and Nilov, D. (2021) Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose) polymerase family proteins, Cancers (Basel), 13, 1201, https://doi.org/10.3390/cancers13061201.
- Lavrik, O. I. (2020) PARPs’ impact on base excision DNA repair, DNA Repair (Amst.), 93, 102911, https://doi.org/ 10.1016/j.dnarep.2020.102911.
- Gibson, B. A., and Kraus, W. L. (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs, Nat. Rev. Mol. Cell Biol., 13, 411-424, https://doi.org/10.1038/nrm3376.
- Grimaldi, G., and Corda, D. (2019) ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes, Biochem. Soc. Trans., 47, 357-370, https://doi.org/10.1042/BST20180416.
- Van Wijk, S. J., and Hageman, G. J. (2005) Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion, Free Radic. Biol. Med., 39, 81-90, https://doi.org/10.1016/j.freeradbiomed.2005.03.021.
- Virág, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M., and Oliver, F. J. (2013) Poly(ADP-ribose) signaling in cell death, Mol. Aspects Med., 34, 1153-1167, https://doi.org/10.1016/j.mam.2013.01.007.
- Liu, S., Luo, W., and Wang, Y. (2022) Emerging role of PARP-1 and PARthanatos in ischemic stroke, J. Neurochem., 160, 74-87, https://doi.org/10.1111/jnc.15464.
- Pacher, P., and Szabó, C. (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors, Cardiovasc. Drug Rev., 25, 235-260, https://doi.org/10.1111/ j.1527-3466.2007.00018.x.
- Narne, P., Pandey, V., Simhadri, P. K., and Phanithi, P. B. (2017) Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: the death knell tolls for neurons, Semin. Cell Dev. Biol., 63, 154-166, https:// doi.org/10.1016/j.semcdb.2016.11.007.
- Berger, N. A., Besson, V. C., Boulares, A. H., Bürkle, A., Chiarugi, A., Clark, R. S., Curtin, N. J., Cuzzocrea, S., Dawson, T. M., Dawson, V. L., Haskó, G., Liaudet, L., Moroni, F., Pacher, P., Radermacher, P., Salzman, A. L., Snyder, S. H., Soriano, F. G., Strosznajder, R. P., Sümegi, B., Swanson, R. A., and Szabo, C. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases, Br. J. Pharmacol., 175, 192-222, https://doi.org/10.1111/bph.13748.
- Ke, Y., Wang, C., Zhang, J., Zhong, X., Wang, R., Zeng, X., and Ba, X. (2019) The role of PARPs in inflammation-and metabolic-related diseases: molecular mechanisms and beyond, Cells, 8, 1047, https://doi.org/10.3390/cells8091047.
- Rose, M., Burgess, J. T., O’Byrne, K., Richard, D. J., and Bolderson, E. (2020) PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance, Front. Cell Dev. Biol., 8, 564601, https://doi.org/10.3389/fcell.2020.564601.
- Slade, D. (2020) PARP and PARG inhibitors in cancer treatment, Genes Dev., 34, 360-394, https://doi.org/10.1101/gad.334516.119.
- Bruin, M. A. C., Sonke, G. S., and Beijnen, J. H. (2022) Pharmacokinetics and pharmacodynamics of PARP inhibitors in oncology, Clin. Pharmacokinet., 61, 1649-1675, https://doi.org/10.1007/s40262-022-01167-6.
- Flippot, R., Patrikidou, A., Aldea, M., Colomba, E., Lavaud, P., Albigès, L., Naoun, N., Blanchard, P., Terlizzi, M., Garcia, C., Bernard-Tessier, A., Fuerea, A., Di Palma, M., Escudier, B., Loriot, Y., Baciarello, G., and Fizazi, K. (2022) PARP inhibition, a new therapeutic avenue in patients with prostate cancer, Drugs, 82, 719-733, https://doi.org/10.1007/s40265-022-01703-5.
- Kurgina, T. A., Moor, N. A., Kutuzov, M. M., Naumenko, K. N., Ukraintsev, A. A., and Lavrik, O. I. (2021) Dual function of HPF1 in the modulation of PARP1 and PARP2 activities, Commun. Biol., 4, 1259, https://doi.org/10.1038/s42003-021-02780-0.
- Piao, L., Fujioka, K., Nakakido, M., and Hamamoto, R. (2018) Regulation of poly(ADP-ribose) polymerase 1 functions by post-translational modifications, Front. Biosci. (Landmark Ed.), 23, 13-26, https://doi.org/10.2741/4578.
- Grube, K., Küpper, J. H., and Bürkle, A. (1991) Direct stimulation of poly(ADP ribose) polymerase in permeabilized cells by double-stranded DNA oligomers, Anal. Biochem., 193, 236-239, https://doi.org/10.1016/ 0003-2697(91)90015-l.
- Шрам С. И., Шиловский Г. А., Хохлов А. Н. (2006) Поли(АДФ-рибоза)-полимераза-1 и старение: изучение возможной связи в экспериментах на стационарных клеточных культурах, Бюлл. эксп. биол. и мед., 141, 567-571.
- Althaus, F. R., Lawrence, S. D., Sattler, G. L., and Pitot, H. C. (1982) ADP-ribosyltransferase activity in cultured hepatocytes. Interactions with DNA repair, J. Biol. Chem., 257, 5528-5535, https://doi.org/10.1016/S0021-9258(19)83809-7.
- Muiras, M. L., Müller, M., Schächter, F., and Bürkle, A. (1998) Increased poly(ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians, J. Mol. Med. (Berl.), 76, 346-354, https://doi.org/10.1007/s001090050226.
- Nilov, D., Maluchenko, N., Kurgina, T., Pushkarev, S., Lys, A., Kutuzov, M., Gerasimova, N., Feofanov, A., Švedas, V., Lavrik, O., and Studitsky, V. M. (2020) Molecular mechanisms of PARP-1 inhibitor 7-methylguanine, Int. J. Mol. Sci., 21, 2159, https://doi.org/10.3390/ijms21062159.
- Кургина Т. А., Шрам С. И., Кутузов М. М., Абрамова Т. В., Щербакова Т. А., Мальцева Е. А., Поройков В. В., Лаврик О. И., Швядас В. К., Нилов Д. К. (2022) Ингибиторное действие 7-метилгуанина и его метаболита 8-гидрокси-7-метилгуанина на поли(ADP-рибозо)полимеразу 1 человека, Биохимия, 87, 794-803, https://X/10.31857/S0320972522060070.
- Kirsanov, K., Fetisov, T., Antoshina, E., Trukhanova, L., Gor’kova, T., Vlasova, O., Khitrovo, I., Lesovaya, E., Kulbachevskaya, N., Shcherbakova, T., Belitsky, G., Yakubovskaya, M., Švedas, V., and Nilov, D. (2022) Toxicological properties of 7-methylguanine, and preliminary data on its anticancer activity, Front. Pharmacol., 13, 842316, https://doi.org/10.3389/fphar.2022.842316.
- Шрам С. И., Щербакова Т. А., Абрамова Т. В., Барадиева Э. Ц., Ефремова А. С., Смирновская М. С., Сильников В. Н., Швядас В. К., Нилов Д. К. (2023) Природные производные гуанина оказывают PARP-ингибиторное и цитопротекторное действие на модели повреждения кардиомиоцитов при окислительном стрессе, Биохимия, 88, 962-972, https://doi.org/10.31857/S0320972523060064.
- Gushchina, I. V., Polenova, A. M., Suplatov, D. A., Švedas, V. K., and Nilov, D. K. (2020) vsFilt: a tool to improve virtual screening by structural filtration of docking poses, J. Chem. Inf. Model., 60, 3692-3696, https://doi.org/10.1021/acs.jcim.0c00303.
- Stroganov, O. V., Novikov, F. N., Stroylov, V. S., Kulkov, V., and Chilov, G. G. (2008) Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening, J. Chem. Inf. Model., 48, 2371-2385, https://doi.org/10.1021/ci800166p.
- Novikov, F. N., Stroylov, V. S., Zeifman, A. A., Stroganov, O. V., Kulkov, V., and Chilov, G. G. (2012) Lead Finder docking and virtual screening evaluation with Astex and DUD test sets, J. Comput. Aided Mol. Des., 26, 725-735, https://doi.org/10.1007/s10822-012-9549-y.
- Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics, J. Mol. Graph., 14, 33-38, https://doi.org/10.1016/0263-7855(96)00018-5.
- Fiskum, G., Craig, S. W., Decker, G. L., and Lehninger, A. L. (1980) The cytoskeleton of digitonin-treated rat hepatocytes, Proc. Natl. Acad. Sci. USA, 77, 3430-3434, https://doi.org/10.1073/pnas.77.6.3430.
- Schulz, I. (1990) Permeabilizing cells: some methods and applications for the study of intracellular processes, Methods Enzymol., 192, 280-300, https://doi.org/10.1016/0076-6879(90)92077-q.
- Esparís-Ogando, A., Zurzolo, C., and Rodriguez-Boulan, E. (1994) Permeabilization of MDCK cells with cholesterol binding agents: dependence on substratum and confluency, Am. J. Physiol., 267, C166-C176, https://doi.org/ 10.1152/ajpcell.1994.267.1.C166.
- Sudji, I. R., Subburaj, Y., Frenkel, N., García-Sáez, A. J., and Wink, M. (2015) Membrane disintegration caused by the steroid saponin digitonin is related to the presence of cholesterol, Molecules, 20, 20146-20160, https://doi.org/10.3390/molecules201119682.
- Adam, S. A., Marr, R. S., and Gerace, L. (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors, J. Cell Biol., 111, 807-816, https://doi.org/10.1083/jcb.111.3.807.
- Langelier, M. F., Zandarashvili, L., Aguiar, P. M., Black, B. E., and Pascal, J. M. (2018) NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains, Nat. Commun., 9, 844, https://doi.org/10.1038/s41467-018-03234-8.
- Clark, N. J., Kramer, M., Muthurajan, U. M., and Luger, K. (2012) Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes, J. Biol. Chem., 287, 32430-32439, https://doi.org/10.1074/ jbc.M112.397067.
- Sukhanova, M. V., Abrakhi, S., Joshi, V., Pastre, D., Kutuzov, M. M., Anarbaev, R. O., Curmi, P. A., Hamon, L., and Lavrik, O. I. (2015) Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging, Nucleic Acids Res., 44, e60, https://doi.org/10.1093/nar/gkv1476.
- Riccio, A. A., Cingolani, G., and Pascal, J. M. (2016) PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage, Nucleic Acids Res., 44, 1691-1702, https://doi.org/10.1093/ nar/gkv1376.
- Kutuzov, M. M., Belousova, E. A., Kurgina, T. A., Ukraintsev, A. A., Vasil’eva, I. A., Khodyreva, S. N., and Lavrik, O. I. (2021) The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context, Sci. Rep., 11, 4849, https://doi.org/10.1038/s41598-021-84351-1.
- Kim, M. Y., Mauro, S., Gévry, N., Lis, J. T., and Kraus, W. L. (2004) NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1, Cell, 119, 803-814, https://doi.org/10.1016/ j.cell.2004.11.002.
- Palazzo, L., Suskiewicz, M. J., and Ahel, I. (2021) Serine ADP-ribosylation in DNA-damage response regulation, Curr. Opin. Genet. Dev., 71, 106-113, https://doi.org/10.1016/j.gde.2021.07.005.
- Алемасова Е. Э., Науменко К. Н., Суханова М. В., Лаврик О. И. (2022) Роль YB-1 в регуляции процесса поли(АДФ-рибозил)ирования, катализируемого поли(АДФ-рибоза)полимеразами, Усп. Биол. Хим., 62, 63-98.
Supplementary files
