Leaf extract from european olive (Olea europaea L.) post-transcriptionally suppresses the epithelial-mesenchymal transition and sensitizes gastric cancer cells to chemotherapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The overall survival of patients with the advanced and recurrent gastric cancer (GC) remains unfavorable. In particular, this is due to cancer spreading and resistance to chemotherapy associated with the epithelial-mesenchymal transition (EMT) of tumor cells. EMT can be identified by the transcriptome profiling of GC for EMT markers. Indeed, analysis of the TCGA and GTEx databases (n = 408) and a cohort of GC patients (n = 43) revealed that expression of the CDH2 gene was significantly decreased in the tumors vs. non-tumor tissues and correlated with the overall survival of GC patients. Expression of the EMT-promoting transcription factors SNAIL and ZEB1 was significantly increased in GC. These data suggest that targeting the EMT might be an attractive therapeutic approach for patients with GC. Previously, we demonstrated a potent anti-cancer activity of the olive leaf extract (OLE). However, its effect on the EMT regulation in GC remained unknown. Here, we showed that OLE efficiently potentiated the inhibitory effect of the chemotherapeutic agents 5-fluorouracil (5-FU) and cisplatin (Cis) on the EMT and their pro-apoptotic activity, as was demonstrated by changes in the expression of the EMT markers (E- and N-cadherins, vimentin, claudin-1) in GC cells treated with the aforementioned chemotherapeutic agents in the presence of OLE. Thus, culturing GC cells with 5-FU + OLE or Cis + OLE attenuated the invasive properties of cancer cells. Importantly, upregulation of expression of the apoptotic markers (PARP cleaved form) and increase in the number of cells undergoing apoptosis (Annexin V-positive) were observed for GC cells treated with a combination of OLE and 5-FU or Cis. Collectively, our data illustrate that OLE efficiently interferes with the EMT in GC cells and potentiates the pro-apoptotic activity of certain chemotherapeutic agents used for GC therapy.

Full Text

Restricted Access

About the authors

Cagla Tekin

Bursa Uludag University

Email: btunca@uludag.edu.tr

Department of Medical Biology, Faculty of Medicine

Turkey, 16059 Bursa

Melis Ercelik

Bursa Uludag University

Email: btunca@uludag.edu.tr

Department of Medical Biology, Faculty of Medicine

Turkey, 16059 Bursa

Pavel Dunaev

Kazan State Medical University

Email: boichuksergei@mail.ru

Department of Pathology

Russian Federation, 420012 Kazan

Aigul Galembikova

Kazan State Medical University

Email: boichuksergei@mail.ru

Department of Pathology

Russian Federation, 420012 Kazan

Gulcin Tezcan

Bursa Uludag University

Email: btunca@uludag.edu.tr

Department of Fundamental Sciences, Faculty of Dentistry

Turkey, 16059 Bursa

Secil Ak Aksoy

Bursa Uludag University

Email: btunca@uludag.edu.tr

Experimental Animal Breeding and Research Unit, Faculty of Medicine, Inegol Vocation School, Bursa Uludag University

Turkey, 16059 Bursa; 16059 Bursa

Ferah Budak

Bursa Uludag University

Email: btunca@uludag.edu.tr

Department of Immunology, Medical Faculty

Turkey, 16059 Bursa

Ozgen Isık

Bursa Uludag University

Email: btunca@uludag.edu.tr

Department of General Surgery, Medical Faculty

Turkey, 16059 Bursa

Nesrin Ugras

Bursa Uludag University

Email: btunca@uludag.edu.tr

Department of Pathology, Medical Faculty

Turkey, 16059 Bursa

Sergei Boichuk

Kazan State Medical University; Russian Medical Academy of Continuous Professional Education; Kazan Federal University

Email: boichuksergei@mail.ru

Department of Pathology, Department of Radiotherapy and Radiology, “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology

Russian Federation, 420012 Kazan; 125445 Moscow; 420012 Kazan

Berrin Tunca

Bursa Uludag University

Author for correspondence.
Email: btunca@uludag.edu.tr

Department of Medical Biology, Faculty of Medicine

Turkey, 16059 Bursa

References

  1. Song, Z., Wu, Y., Yang, J., Yang, D., and Fang, X. (2017) Progress in the treatment of advanced gastric cancer, Tumour Biol., 39, 1010428317714626, doi: 10.1177/1010428317714626.
  2. Power, D. G., Kelsen, D. P., and Shah, M. A. (2010) Advanced gastric cancer--slow but steady progress, Cancer Treat. Rev., 36, 384-392, doi: 10.1016/j.ctrv.2010.01.005.
  3. Huang, L., Wu, R. L., Xu, A. M. (2015) Epithelial-mesenchymal transition in gastric cancer, Am. J. Transl. Res., 7, 2141-2158.
  4. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133, 704-715, doi: 10.1016/j.cell.2008.03.027.
  5. Serrano-Gomez, S. J., Maziveyi, M., and Alahari, S. K. (2016) Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications, Mol. Cancer, 15, 18, doi: 10.1186/s12943-016-0502-x.
  6. Du, B., and Shim, J. S. (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer, Molecules, 21, 965, doi: 10.3390/molecules21070965.
  7. Chen, B., Dragomir, M. P., Yang, C., Li, Q., Horst, D., and Calin, G. A. (2022) Targeting non-coding RNAs to overcome cancer therapy resistance, Signal. Transduct. Target Ther., 7, 121, doi: 10.1038/s41392-022-00975-3.
  8. Park, N. R., Cha, J. H., Sung, P. S., Jang, J. W., Choi, J. Y., Yoon, S. K., and Bae, S. H. (2022) MiR-23b-3p suppresses epithelial-mesenchymal transition, migration, and invasion of hepatocellular carcinoma cells by targeting c-MET, Heliyon, 8, e11135, doi: 10.1016/j.heliyon.2022.e11135.
  9. Hur, K., Toiyama, Y., Takahashi, M., Balaguer, F., Nagasaka, T., Koike, J., Hemmi, H., Koi, M., Boland, C. R., and Goel, A. (2013) MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis, Gut, 62, 1315-1326, doi: 10.1136/gutjnl-2011-301846.
  10. Gollavilli, P. N., Parma, B., Siddiqui, A., Yang, H., Ramesh, V., Napoli, F., Schwab, A., Natesan, R., Mielenz, D., and Asangani, I. A. (2021) The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter, Oncogene, 40, 2309-2322, doi: 10.1038/s41388-021-01708-6.
  11. Cragg, G. M., and Newman, D. J. (2005) Plants as a source of anti-cancer agents, J. Ethnopharmacol., 100, 72-79, doi: 10.1016/j.jep.2005.05.011.
  12. Li, J., Liu, H., Ramachandran, S., Waypa, G. B., Yin, J. J., Li, C. Q., Han, M., Huang, H. H., Sillard, W. W., Vanden Hoek, T. L., and Shao, Z. H. (2010) Grape seed proanthocyanidins ameliorate Doxorubicin-induced cardiotoxicity, Am. J. Chinese Med., 38, 569-584, doi: 10.1142/S0192415X10008068.
  13. Hamdi, H. K., and Castellon, R. (2005) Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor, Biochem. Biophys. Res. Commun., 334, 769-778, doi: 10.1016/j.bbrc.2005.06.161.
  14. Ryan, D., and Robards, K. (1998) Phenolic compounds in olives, Analyst, 123, 31-44, doi: 10.1039/A708920A.
  15. Mutlu, M., Tunca, B., Ak Aksoy, S., Tekin, C., Egeli, U., and Cecener, G. (2021) Inhibitory effects of Olea europaea leaf extract on mesenchymal transition mechanism in glioblastoma cells, Nutr. Cancer, 73, 713-720, doi: 10.1080/01635581.2020.1765260.
  16. Bartolí, R., Fernández-Bañares, F., Navarro, E., Castellà, E., Mañé, J., Alvarez, M., Pastor, C., Cabré, E., and Gassull, M. A. (2000) Effect of olive oil on early and late events of colon carcinogenesis in rats: modulation of arachidonic acid metabolism and local prostaglandin E(2) synthesis, Gut, 46, 191-199, doi: 10.1136/gut.46.2.191.
  17. Al-Quraishy, S., Othman, M. S., Dkhil, M. A., and Abdel Moneim, A. E. (2017) Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities, Biomed Pharmacother., 91, 338-349, doi: 10.1016/j.biopha.2017.04.069.
  18. Tekin, C., Ercelik, M., Tezcan, G., Ak Aksoy, S., Egeli, U., Cecener, G., and Tunca, B. (2022) Olea europaea leaf extract suppress stemness – characteristics of gastric cancer via long non-coding RNAs, Eur. J. Integrat. Med., 49, 102099, doi: 10.1016/j.eujim.2022.102099.
  19. Tezcan, G., Tunca, B., Bekar, A., Budak, F., Sahin, S., Cecener, G., Egeli, U., Taskapılıoglu, M. O., Kocaeli, H., Tolunay, S., Malyer, H., Demir, C., and Tumen, G. (2014) Olea europaea leaf extract improves the treatment response of GBM stem cells by modulating miRNA expression, Am. J. Cancer Res., 4, 572-590.
  20. Baj, J., Korona-Głowniak, I., Forma, A., Maani, A., Sitarz, E., Rahnama-Hezavah, M., Radzikowska, E., and Portincasa, P. (2020) Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer, Cells, 9, 1055, doi: 10.3390/cells9041055.
  21. Focaccetti, C., Bruno, A., Magnani, E., Bartolini, D., Principi, E., Dallaglio, K., Bucci, E. O., Finzi, G., Sessa, F., Noonan, D. M., and Albini, A. (2015) Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes, PLoS One, 10, e0115686, doi: 10.1371/journal.pone.0115686.
  22. Kim, A. Y., Kwak, J. H., Je, N. K., Lee, Y. H., and Jung, Y. S. (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells, Toxicol. Res., 31, 151-156, doi: 10.5487/TR.2015.31.2.151.
  23. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ˆ(-delta delta C(T)) method, Methods, 25, 402-408, doi: 10.1006/meth.2001.1262.
  24. Tunca, B., Tezcan, G., Cecener, G., Egeli, U., Ak, S., Malyer, H., Tumen, G., and Bilir, A. (2012) Olea europaea leaf extract alters microRNA expression in human glioblastoma cells, J. Cancer Res Clin Oncol., 138, 1831-1844, doi: 10.1007/s00432-012-1261-8.
  25. Kamiloglu, S. (2019) Effect of different freezing methods on the bioaccessibility of strawberry polyphenols, Int. J. Food Sci. Technol., 54, 2652-2660, doi: 10.1111/ijfs.14249.
  26. Ercelik, M., Tekin, C., Tezcan, G., Ak Aksoy, S., Bekar, A., Kocaeli, H., Taskapilioglu, M. O., Eser, P., and Tunca, B. (2023) Olea europaea leaf phenolics oleuropein, Hydroxytyrosol, Tyrosol, and Rutin induce apoptosis and additionally affect temozolomide against glioblastoma: in particular, oleuropein inhibits spheroid growth by attenuating stem-like cell phenotype, Life (Basel), 13, 470, doi: 10.3390/life13020470.
  27. Xu, Z. Y., Tang, J. N., Xie, H. X., Du, Y. A., Huang, L., et al. (2015) 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells, Int. J. Biol. Sci., 11, 284-294, doi: 10.7150/ijbs.10248.
  28. Yang, H., Huang, S., Wei, Y., Cao, S., Pi, C., Feng, T., Liang, J., Zhao, L., and Ren, G. (2017) Curcumin enhances the anticancer effect of 5-fluorouracil against gastric cancer through down-regulation of COX-2 and NF-κB signaling pathways, J. Cancer, 8, 3697-3706, doi: 10.7150/jca.20196.
  29. Tao, K., Yin, Y., Shen, Q., Chen, Y., Li, R., Chang, W., Bai, J., Liu, W., Shi, L., and Zhang, P. (2016) Akt inhibitor MK-2206 enhances the effect of Cisplatin in gastric cancer cells, Biomed. Rep., 4, 365-368, doi: 10.3892/br.2016.594.
  30. Lei, Y., Tang, L., Hu, J., Wang, S., Liu, Y., Yang, M., Zhang, J., and Tang, B. (2020) Inhibition of MGMT-mediated autophagy suppression decreases cisplatin chemosensitivity in gastric cancer, Biomed. Pharmacother., 125, 109896, doi: 10.1016/j.biopha.2020.109896.
  31. Ianevski, A., Giri, A. K., and Aittokallio, T. (2020) SynergyFinder 2.0: visual analytics of multi-drug combination synergies, Nucleic Acids Res., 48, 488-493, doi: 10.1093/nar/gkaa216.
  32. Ciapetti, G., Granchi, D., Savarino, L., Cenni, E., Magrini, E., Baldini, N., and Giunti, A. (2002) In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells, Biomaterials, 23, 617-627, doi: 10.1016/s0142-9612(01)00149-1.
  33. Anasamy, T., Abdul, A. B., Sukari, M. A., Abdelwahab, S. I., Mohan, S., Kamalidehghan, B., Azid, M. Z., Muhammad Nadzri, N., et al. (2013) A phenylbutenoid dimer, cis-3-(3’,4’-dimethoxyphenyl)-4-[(E)-3’’’,4’’’-dimethoxystyryl] cyclohex-1-ene, exhibits Apoptogenic properties in T-acute lymphoblastic leukemia cells via induction of p53-independent mitochondrial signalling pathway, Evid. Based Complement Alternat. Med., 93, 9810, doi: 10.1155/2013/939810.
  34. Yuan, T., Ni, Z., Han, C., Min, Y., Sun, N., Liu, C., Shi, M., Lu, W., Wang, N., Du, F., Wu, Q., Xie, N., and Shi, Y. (2019) SOX2 interferes with the function of CDX2 in bile acid-induced gastric intestinal metaplasia, Cancer Cell Int., 19, 24, doi: 10.1186/s12935-019-0739-8.
  35. Xu, W., Yang, Z., and Lu, N. (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition, Cell Adh. Migr., 9, 317-324, doi: 10.1080/19336918.2015.1016686.
  36. Jin, W. (2020) Role of JAK/STAT3 Signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition, Cells, 9, 217, doi: 10.3390/cells9010217.
  37. Gao, H., Teng, C., Huang, W., Peng, J., and Wang, C. (2015) SOX2 promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-α signaling, Int. J. Mol. Sci., 16, 21643-21657, doi: 10.3390/ijms160921643.
  38. Schaefer, T., Steiner, R., and Lengerke, C. (2020) SOX2 and p53 expression control converges in PI3K/AKT signaling with versatile implications for stemness and cancer, Int. J. Mol. Sci., 21, 4902, doi: 10.3390/ijms21144902.
  39. Zhong, B. H., and Dong, M. (2023) The implication of ciliary signaling pathways for epithelial-mesenchymal transition, Mol. Cell Biochem., doi: 10.1007/s11010-023-04817-w.
  40. Pećina-Slaus, N. (2003) Tumor suppressor gene E-cadherin and its role in normal and malignant cells, Cancer Cell Int., 3, 17, doi: 10.1186/1475-2867-3-17.
  41. Malgulwar, P. B., Nambirajan, A., Pathak, P., Rajeshwari, M., Suri, V., Sarkar, C., Singh, M., and Sharma, M. C. (2018) Epithelial-to-mesenchymal transition-related transcription factors are up-regulated in ependymomas and correlate with a poor prognosis, Hum. Pathol., 82, 149-157, doi: 10.1016/j.humpath.2018.07.018.
  42. Huang, J., Fang, J., Chen, Q., Chen, J., and Shen, J. (2022) Epigenetic silencing of E-cadherin gene induced by lncRNA MALAT-1 in acute myeloid leukaemia, J. Clin. Lab. Anal., 36, e24556, doi: 10.1002/jcla.24556.
  43. Chaleshi, V., Asadzadeh Aghdaei, H., Nourian, M., Iravani, S., Jalaeikhoo, H., Rajaeinejad, M., Khoshdel, A. R., and Naghoosi, H. (2021) Association of MALAT1 expression in gastric carcinoma and the significance of its clinicopathologic features in an Iranian patient, Gastroenterol. Hepatol. Bed Bench., 14, 108-114.
  44. YiRen, H., YingCong, Y., Sunwu, Y., Keqin, L., Xiaochun, T., Senrui, C., Ende, C., XiZhou, L., and Yanfan, C. (2017) Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer, Mol. Cancer, 16, 174, doi: 10.1186/s12943-017-0743-3.
  45. Hu, J., Sun, Z., Hu, K., Tang, M., Sun, S., Fang, Y., Yu, H., and Zhang, Y. (2020) Over-expression of Hsa-miR-23b-3p suppresses proliferation, migration, invasion and epithelial-mesenchymal transition of human cervical cancer CasKi cells [in Chinese], Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi., 36, 983-989.
  46. Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., Baba, H., and Mori, M. (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance, Cancer Sci., 101, 293-299, doi: 10.1111/j.1349-7006.2009.01419.x.
  47. Aban, C. E., Lombardi, A., Neiman, G., Biani, M. C., La Greca, A., Waisman, A., Moro, L. N., Sevlever, G., Miriuka, S., and Luzzani, C. (2021) Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT, Sci. Rep., 11, 2048, doi: 10.1038/s41598-021-81735-1.
  48. Chen, B., Chen, B., Zhu, Z., Ye, W., Zeng, J., Liu, G., Wang, S., Gao, J., Xu, G., and Huang, Z. (2019) Prognostic value of ZEB-1 in solid tumors: a meta-analysis, BMC. Cancer, 19, 635, doi: 10.1186/s12885-019-5830-y.
  49. Romero, S., Musleh, M., Bustamante, M., Stambuk, J., Pisano, R., Lanzarini, E., Chiong, H., Rojas, J., Castro, V. G., Jara, L., Berger, Z., and Gonzalez-Hormazabal, P. (2018) Polymorphisms in TWIST1 and ZEB1 are associated with prognosis of gastric cancer patients, Anticancer Res., 38, 3871-3877, doi: 10.21873/anticanres.12671.
  50. Sundararajan, V., Gengenbacher, N., Stemmler, M. P., Kleemann, J. A., Brabletz, T., and Brabletz, S. (2015) The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5, Oncotarget, 6, 27083-27096, doi: 10.18632/oncotarget.4807.
  51. Moes, M., Le Béchec, A., Crespo, I., Laurini, C., Halavatyi, A., Vetter, G., Del Sol, A., and Friederich, E. (2012) A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition, PLoS One, 7, e35440, doi: 10.1371/journal.pone.0035440.
  52. Otsubo, T., Akiyama, Y., Yanagihara, K., and Yuasa, Y. (2008) SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis, Br. J. Cancer, 98, 824-831, doi: 10.1038/sj.bjc.6604193.
  53. Medrano-Gonzálezl, P. A., Cruz-Villegas, F., Alarcón Del Carmen, A., Montaño, L. F., and Rendón-Huerta, E. P. (2022) Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells, Mol. Biol. Rep., 49, 11663-11674, doi: 10.1007/s11033-022-07976-z.
  54. Yu, S., Zhang, Y., Li, Q., Zhang, Z., Zhao, G., and Xu, J. (2019) CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer, Cell Death Dis., 10, 949, doi: 10.1038/s41419-019-2168-y.
  55. Chen, A., Beetham, H., Black, M. A., Priya, R., Telford, B. J., Guest, J., Wiggins, G. A., Godwin, T. D., Yap, A. S., and Guilford, P. J. (2014) E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition, BMC Cancer, 14, 552, doi: 10.1186/ 1471-2407-14-552.
  56. Dart, A. (2023) EMT in chemoresistance, Nat. Rev. Cancer, 23, 349, doi: 10.1038/s41568-023-00581-7.
  57. Singh, A., and Settleman, J. (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer, Oncogene, 29, 4741-4751, doi: 10.1038/onc.2010.215.
  58. Essafi Rhouma, H., Trabelsi, N., Chimento, A., Benincasa, C., Tamaalli, A., Perri, E., Zarrouk, M., and Pezzi, V. (2021) Olea europaea L. flowers as a new promising anticancer natural product: phenolic composition, antiproliferative activity and apoptosis induction, Nat. Prod. Res., 8, 1-4, doi: 10.1080/14786419.2019.1637867.
  59. Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Alaiz, M., Vioque, J., Girón-Calle, J., and Fernández-Bolaños, J. (2019) Pectin-rich extracts from olives inhibit proliferation of Caco-2 and THP-1 cells, Food Funct., 10, 4844-4853, doi: 10.1039/c9fo00917e.
  60. Benot-Dominguez, R., Tupone, M. G., Castelli, V., d’Angelo, M., Benedetti, E., Quintiliani, M., Cinque, B., Forte, I. M., Cifone, M. G., Ippoliti, R., Barboni, B., Giordano, A., and Cimini, A. (2021) Olive leaf extract impairs mitochondria by pro-oxidant activity in MDA-MB-231 and OVCAR-3 cancer cells, Biomed Pharmacother., 134, 11113, doi: 10.1016/ j.biopha.2020.111139.
  61. Ruzzolini, J., Peppicelli, S., Andreucci, E., Bianchini, F., Scardigli, A., Romani, A., la Marca, G., Nediani, C., and Calorini, L. (2018) Oleuropein, the main polyphenol of Olea europaea leaf extract, has an anti-cancer effect on human BRAF melanoma cells and potentiates the cytotoxicity of current chemotherapies, Nutrients, 10, 1950, doi: 10.3390/nu10121950.
  62. Zeriouh, W., Nani, A., Belarbi, M., Dumont, A., de Rosny, C., Aboura, I., Ghanemi, F. Z., Murtaza, B., Patoli, D., Thomas, C., Apetoh, L., Rébé, C., Delmas, D., Khan, N. A., Ghiringhelli, F., Rialland, M., and Hichami, A. (2017) Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway, PLoS One, 12, e0170823, doi: 10.1371/journal.pone.0170823.
  63. Samet, I., Han, J., Jlaiel, L., Sayadi, S., and Isoda, H. (2014) Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism, Oxid. Med. Cell Longev., 9, 27619, doi: 10.1155/2014/927619.
  64. Ercelik, M., Tunca, B., Ak Aksoy, S., Tekin, C., and Tezcan, G. (2023) Olea europaea L. leaf extract attenuates temozolomide-induced senescence-associated secretion phenotype in glioblastoma, Turk. J. Pharm. Sci., 9, 68-77, doi: 10.4274/tjps.galenos.2022.57639.
  65. Tezcan, G., Taskapilioglu, M. O., Tunca, B., Bekar, A., Demirci, H., Kocaeli, H., Aksoy, S. A., Egeli, U., Cecener, G., and Tolunay, S. (2017) Olea europaea leaf extract and bevacizumab synergistically exhibit beneficial efficacy upon human glioblastoma cancer stem cells through reducing angiogenesis and invasion in vitro, Biomed Pharmacother., 90, 713-723, doi: 10.1016/j.biopha.2017.04.022.
  66. Tezcan, G., Tunca, B., Demirci, H., Bekar, A., Taskapilioglu, M. O., Kocaeli, H., Egeli, U., Cecener, G., Tolunay, S., and Vatan, O. (2017) Olea europaea leaf extract improves the efficacy of temozolomide therapy by inducing MGMT methylation and reducing P53 expression in glioblastoma, Nutr. Cancer, 69, 873-880, doi: 10.1080/ 01635581.2017.1339810.
  67. Ohtsu, A. (2008) Chemotherapy for metastatic gastric cancer: past, present, and future, J. Gastroenterol., 43, 256-264, doi: 10.1007/s00535-008-2177-6.
  68. Tong, H., Li, T., Qiu, W., and Zhu, Z. (2019) Claudin-1 silencing increases sensitivity of liver cancer HepG2 cells to 5-fluorouracil by inhibiting autophagy, Oncol. Lett., 18, 5709-5716, doi: 10.3892/ol.2019.10967.
  69. Visco, Z. R., Sfakianos, G., Grenier, C., Boudreau, M. H., Simpson, S., Rodriguez, I., Whitaker, R., Yao, D. Y., Berchuck, A., Murphy, S. K., and Huang, Z. (2021) Epigenetic regulation of claudin-1 in the development of ovarian cancer recurrence and drug resistance, Front. Oncol., 11, 620873, doi: 10.3389/fonc.2021.620873.
  70. Fang, S., Yu, L., Mei, H., Yang, J., Gao, T., Cheng, A., Guo, W., Xia, K., and Liu, G. (2016) Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through Snail, Oncol. Lett., 12, 5007-5014, doi: 10.3892/ol.2016.5342.
  71. Chen, S., Wang, G., Tao, K., Cai, K., Wu, K., Ye, L., Bai, J., Yin, Y., Wang, J., Shuai, X., Gao, J., Pu, J., and Li, H. (2020) Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 cooperates with enhancer of zeste homolog 2 to promote hepatocellular carcinoma development by modulating the microRNA-22/Snail family transcriptional repressor 1 axis, Cancer Sci., 111, 1582-1595, doi: 10.1111/cas.14372.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Regulation of epithelial-mesenchymal transition (EMT) gene expression in gastric cancer (GC). a – CDH1 gene expression in GC tissue and non-tumor tissues (GEPIA database); b – CDH1 gene expression in GC samples obtained from patients participating in this study; c – the effect of CDH1 gene expression impairment on overall survival of GC patients (GEPIA database); d – CDH2 gene expression in GC tissue (GEPIA database); d – CDH2 gene expression in GC samples obtained from patients participating in this study; e – the effect of CDH2 gene expression impairment on overall survival of GC patients (GEPIA database); g–i – expression of SNAI1, ZEB1, and TWIST genes encoding transcription factors associated with EMT in GC (GEPIA database). k – expression of non-coding RNA MALAT1 in GC (GEPIA database); l – expression of non-coding RNA MALAT1 in GC samples obtained from patients participating in this study; m – relationship between expression of non-coding RNA MALAT1 and overall survival of patients with GC (GEPIA database); n – interaction of non-coding RNA MALAT1 and the CDH2 gene (LncRRIsearch database); o and p – expression of miR-23b-3p and miR-200c in GC; p – binding of miR-23b-3p to the site of non-coding RNA MALAT1 (lncRNASNP database); c – binding of miR-200c to the site of the ZEB1 gene (DIANA-TarBase database). The level of statistical significance (p) was calculated using Student's t-test (for a, b, d, e, g–l, o and n) and the Kaplan–Meier test (for c, f and m); * p < 0.05; TPM – number of transcripts per million mapped reads

Download (532KB)
3. Fig. 2. Effect of OLE, 5-FU and Cis on the viability of AGS cells. a – Expression of CDH2, SNAI1 and ZEB1 genes in different gastric cancer cells (HPA database); b – Signaling pathways in AGS tumor cells (HPA database); c – Viability of AGS cells at different concentrations of OLE (incubation for 24, 48 and 72 h); d – Effect of half inhibitory concentration (IC50) of OLE on AGS cell proliferation; d and g – Effect of half inhibitory concentration (IC50) of 5-FU on AGS cell proliferation; f and h – Effect of half inhibitory concentration (IC50) of Cis on AGS cell proliferation. i – study of the ability of OLE, 5-FU and Cis to induce apoptosis of AGS cells by fluorescence microscopy (staining with AO/PI dye containing acridine orange – AO and propidium iodide – PI); k – study of the ability of OLE, 5-FU and Cis to induce apoptosis of AGS cells by flow cytometry. Tumor cells were stained with Annexin V and propidium iodide (PI) dyes. OLE – Olea europaea leaf extract; 5-FU – 5-fluorouracil; Cis – cisplatin. The level of statistical significance (p) was calculated by one-way analysis of variance (ANOVA) and using Tukey’s post hoc test; * p < 0.05; n = 3

Download (595KB)
4. Fig. 3. Effect of combinations of OLE (1.5 mg/ml) with 5-FU (25 μM) and Cis (20 μM) on the viability of AGS cells. a – Viability of AGS cells when cultured with OLE alone and under conditions of combinations of OLE with chemotherapy drugs (OLE + 5-FU, OLE + Cis); n = 3. b–d – Study of AGS cell proliferation when cultured with OLE, 5-FU, Cis and their combinations; d – Study of the interaction of OLE with chemotherapy drugs (5-FU, Cis) using the Bliss synergy scale; e – synergistic effect of the interaction of OLE and Cis on AGS cells (data from Synergy Finder software); g – additive effect of the interaction of OLE and 5-FU (data from Synergy Finder software). OLE – Olea europaea leaf extract; 5-fluorouracil – 5-FU; cisplatin – Cis. The level of statistical significance (p) was calculated by one-way analysis of variance (ANOVA) and using Tukey's post hoc test; * p < 0.05

Download (555KB)
5. Fig. 4. Study of the ability of OLE (1.5 mg/ml), 5-FU (25 μM), Cis (20 μM) and their combinations to induce AGS cell death via apoptosis. a–c – Study of the ability of combinations of OLE + 5-FU, OLE + Cis, OLE + 5-FU + Cis to induce AGS cell apoptosis using flow cytometry. Tumor cells were stained with Annexin V and propidium iodide (PI); g and e – study of the ability of OLE, 5-FU, Cis and combinations of OLE + 5-FU, OLE + Cis to induce AGS cell apoptosis using Western blotting. Apoptosis markers – cleaved forms of PARP1 and caspase-3. β-Actin reflects the protein level in the samples. The graphs show the expression of cleaved forms of PARP1 and caspase-3 proteins, expressed in pixels. OLE – Olea europaea leaf extract; 5-fluorouracil – 5-FU; cisplatin – Cis. The level of statistical significance (p) was calculated by one-way analysis of variance (ANOVA) and using Tukey's post hoc test; * p < 0.05; n = 3

Download (331KB)
6. Fig. 5. Study of the ability of OLE (1.5 mg/ml), 5-FU (25 μM), Cis (20 μM) and their combinations to inhibit the epithelial-mesenchymal transition (EMT) process in AGS cells. a – Analysis of CDH2 gene expression in AGS cells under the influence of OLE, 5-FU, Cis and their combinations. b and c – Study of the ability of OLE, 5-FU, Cis and their combinations to inhibit the EMT process in AGS cells using Western blotting. Analysis of the expression of N-cadherin, E-cadherin, vimentin and claudin-1 involved in the EMT process is shown. β-Actin reflects the protein level in the samples. The graphs show the expression of the studied EMT proteins, expressed in pixels. g – Analysis of miR-23b-3p expression in AGS cells cultured for 72 h in the presence of OLE, 5-FU, Cis and their combinations; d – Analysis of ZEB1 gene expression in AGS cells cultured for 72 h in the presence of OLE, 5-FU, Cis and their combinations; e – Analysis of miR-200c expression in AGS cells cultured for 72 h in the presence of OLE, 5-FU, Cis and their combinations; g – Analysis of SNAI1 gene expression in AGS cells cultured for 72 h in the presence of OLE, 5-FU, Cis and their combinations. OLE – Olea europaea leaf extract; 5-fluorouracil – 5-FU; cisplatin – Cis. The level of statistical significance (p) was calculated using Student's t-test for independent samples; * p < 0.05; n = 3

Download (460KB)
7. Fig. 6. Study of the effect of OLE (1.5 mg/ml), 5-FU (25 μM), Cis (20 μM) and their combinations on SOX2 protein expression in AGS cells by immunofluorescence microscopy. a and b – AGS cells were incubated with OLE for 24 h, with chemotherapy drugs – for 48 h, with a combination of OLE + chemotherapy drugs – 24 h. SOX2 protein expression – green fluorescence (determined at 488 nm wavelength). The cell nucleus was visualized using DAPI dye (blue staining). c – SOX2 fluorescence intensity in AGS cells. The fluorescence intensity index (H-score) for each sample was calculated using the formula: number of stained cells (%) × cell staining intensity. OLE – Olea europaea leaf extract; 5-fluorouracil – 5-FU; cisplatin – Cis. The level of statistical significance (p) was calculated using Student's t-test for independent samples; * p < 0.05; n = 3

Download (373KB)
8. Fig. 7. Study of the effect of OLE (1.5 mg/ml), 5-FU (25 μM), Cis (20 μM) on the migration rate of AGS cells. a – Light microscopy of the damaged area of ​​the AGS cell monolayer after different time intervals (upon damage – 0 h, after 24 h, after 48 h). 1 – Control; 2 – OLE; 3 – 5-FU; 4 – OLE + 5-FU; 5 – Cis; 6 – OLE + Cis; 7 – 5-FU + Cis; 8 – OLE + 5-FU + Cis. b – Change in the “wound area” (damaged area of ​​the AGS cell monolayer) under the influence of OLE, chemotherapy drugs and their combinations. On the right of the graph is the change in the “wound area” under the influence of OLE, chemotherapy drugs and their combinations in the first 24 hours. The level of statistical significance (p) was calculated using one-way analysis of variance (ANOVA); * p < 0.05; n = 3

Download (497KB)

Copyright (c) 2024 Russian Academy of Sciences