The influence of nucleotide context on non-specific amplification of DNA with Bst exo- DNA polymerase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In recent years, nucleic acid amplification methods that proceed in isothermal mode and require the use of DNA polymerases with strand-displacement activity have become increasingly widespread. Among these, the most popular is the Bst exo- polymerase, but it tends to carry out nonspecific DNA synthesis through multimerization. This study shows the influence of the nucleotide sequence on the binding of Bst exo- with DNA and on the efficiency of multimerization initiation. On single-stranded trinucleotides (sst) and dinucleotide duplexes (dst), molecular docking revealed the preference for binding of the “closed” form of Bst exo- to purine-rich sequences, especially those containing dG at the 3′ end of the synthesized strand. The data obtained in silico were confirmed in experiments using oligonucleotide templates that differ in the structure of the 3′- and 5′-terminal motifs. It has been shown that templates with an oligopurine 3′-terminal fragment and an oligopyrimidine 5′-terminal part contribute to an earlier start of multimerization. The obtained data can be used at the stage of selecting optimal nucleotide sequences for isothermal amplification, ensuring more reliable results. Thus, to avoid multimerization, DNA templates and primers containing terminal dA and/or dG nucleotides should be excluded.

Full Text

Restricted Access

About the authors

R. R. Garafutdinov

Ufa Federal Research Center, Russian Academy of Sciences

Email: garafutdinovr@gmail.com

Institute of Biochemistry and Genetics

Russian Federation, 450054 Ufa, Bashkortostan

O. Yu. Kupova

Ufa Federal Research Center, Russian Academy of Sciences

Email: garafutdinovr@gmail.com

Institute of Biochemistry and Genetics

Russian Federation, 450054 Ufa, Bashkortostan

A. R. Sakhabutdinova

Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: garafutdinovr@gmail.com

Institute of Biochemistry and Genetics

Russian Federation, 450054 Ufa, Bashkortostan

References

  1. Бодулев О. Л., Сахаров И. Ю. (2020) Изотермические методы амплификации нуклеиновых кислот и их применение в биоанализе, Биохимия, 85, 174-196, doi: 10.31857/S0320972520020037.
  2. Soroka, M., Wasowicz, B., and Rymaszewska, A. (2021) Loop-mediated isothermal amplification (LAMP): the better sibling of PCR? Cells, 10, 1931, doi: 10.3390/cells10081931.
  3. Гарафутдинов Р. Р., Сахабутдинова А. Р., Гильванов А. Р., Чемерис А. В. (2021) Амлификация нуклеиновых кислот «катящимся кольцом» – универсальный метод анализа широкого круга биологических мишеней, Биоорг. Химия, 47, 721-740, doi: 10.31857/S0132342321060075.
  4. Kuznetsova, A. A., Fedorova, O. S., and Kuznetsov, N. A. (2022) Structural and molecular kinetic features of activities of DNA polymerases, Int. J. Mol. Sci., 23, 6373, doi: 10.3390/ijms23126373.
  5. Oscorbin, I., and Filipenko, M. (2023) Bst polymerase – a humble relative of Taq polymerase, Comput. Struct. Biotechnol. J., 21, 4519-4535, doi: 10.1016/j.csbj.2023.09.008.
  6. Hafner, G. J., Yang, I. C., Wolter, L. C., Stafford, M. R., and Giffard, P. M. (2001) Isothermal amplification and multimerization of DNA by Bst DNA polymerase, BioTechniques, 30, 852-886, doi: 10.2144/01304rr03.
  7. Garafutdinov, R. R., Gilvanov, A. R., and Sakhabutdinova, A. R. (2020) The influence of reaction conditions on DNA multimerization during isothermal amplification with Bst DNA polymerase, Appl. Biochem. Biotechnol., 190, 758-771, doi: 10.1007/s12010-019-03127-6.
  8. Wang, G., Ding, X., Hu, J., Wu, W., Sun, J., and Mu, Y. (2017) Unusual isothermal multimerization and amplification by the strand-displacing DNA polymerases with reverse transcription activities, Sci. Rep., 7, 13928, doi: 10.1038/s41598-017-13324-0.
  9. Sakhabutdinova, A. R., Kamalov, M. I., Salakhieva, D. V., Mavzyutov, A. R., and Garafutdinov, R. R. (2021) Inhibition of nonspecific polymerase activity using poly(aspartic) acid as a model anionic polyelectrolyte, Anal. Biochem., 628, 114267, doi: 10.1016/j.ab.2021.114267.
  10. Зырина Н. В., Антипова В. Н. (2021) Неспецифический синтез нуклеиновых кислот в реакциях изотермической амплификации, Биохимия, 86, 1066-1077, doi: 10.31857/S0320972521070101.
  11. Rolando, J. C., Jue, E., Barlow, J. T., and Ismagilov, R. F. (2020) Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification, Nucleic Acids Res., 48, e42, doi: 10.1093/nar/gkaa099.
  12. Reid, M. S., Le, X. C., and Zhang, H. (2018) Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example, Angew. Chem. Int. Ed. Engl., 57, 11856-11866, doi: 10.1002/anie.201712217.
  13. Tan, E., Erwin, B., Dames, S., Ferguson, T., Buechel, M., Irvine, B., Voelkerding, K., and Niemz, A. (2008) Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities, Biochemistry, 47, 9987-9999, doi: 10.1021/bi800746p.
  14. Qian, J., Ferguson, T. M., Shinde, D. N., Ramírez-Borrero, A. J., Hintze, A., Adami, C., and Niemz, A. (2012) Sequence dependence of isothermal DNA amplification via EXPAR, Nucleic Acids Res., 40, e87, doi: 10.1093/nar/gks230.
  15. Garafutdinov, R. R., Sakhabutdinova, A. R., Kupryushkin, M. S., and Pyshnyi, D. V. (2020) Prevention of DNA multimerization during isothermal amplification with Bst exo–DNA polymerase, Biochimie, 168, 259-267, doi: 10.1016/ j.biochi.2019.11.013.
  16. Сахабутдинова А. Р., Мирсаева Л. Р., Оскорбин И. П., Филипенко М. Л., Гарафутдинов Р. Р. (2020) Устранение мультимеризации ДНК, возникающей при изотермической амплификации в присутствии ДНК полимеразы Bst exo-, Биоорг. Химия, 46, 56-64, doi: 10.31857/S0132342320010091.
  17. Garafutdinov, R. R., Gilvanov, A. R., Kupova, O. Y., and Sakhabutdinova, A. R. (2020) Effect of metal ions on isothermal amplification with Bst exo– DNA polymerase, Int. J. Biol. Macromol., 161, 1447-1455, doi: 10.1016/ j.ijbiomac.2020.08.028.
  18. Schrödinger Suite, Small-Molecule Drug Discovery Suite 2016-4, Schrödinger, LLC, New York, 2016.
  19. Garafutdinov, R. R., Kupova, O. Y., and Sakhabutdinova, A. R. (2020) Data on molecular docking simulations of quaternary complexes ‘Bst exo– polymerase-DNA-dCTP-metal cations’, Data-in-Brief, 33, 106549, doi: 10.1016/j.dib.2020.106549.
  20. Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2016.
  21. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., and Sherman, W. (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aid. Mol. Des., 27, 221-234, doi: 10.1007/s10822-013-9644-8.
  22. Wu, E. Y., and Beese, L. S. (2011) The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an “ajar” intermediate conformation in the nucleotide selection mechanism, J. Biol. Chem., 286, 19758-19767, doi: 10.1074/jbc.M110.191130.
  23. Knorre, D. G., Lavrik, O. I., and Nevinsky, G. A. (1988) Protein-nucleic acid interaction in reactions catalyzed with DNA polymerases, Biochimie, 70, 655-661, doi: 10.1016/0300-9084(88)90250-7.
  24. Kolocheva, T. I., Nevinsky, G. A., Levina, A. S., Khomov, V. V., and Lavrik, O. I. (1991) The mechanism of recognition of templates by DNA polymerases from pro- and eukaryotes as revealed by affinity modification data, J. Biomol. Struct. Dyn., 9, 169-186, doi: 10.1080/07391102.1991.10507901.
  25. Doronin, S. V., Nevinsky, G. A., Malygina, T. O., Podust, V. N., Khomov, V. V., and Lavrik, O. I. (1989) The efficiency of interaction of deoxyribonucleoside-5’-mono-, di- and triphosphates with the active center of E. coli DNA polymerase I Klenow fragment, FEBS Lett., 259, 83-85, doi: 10.1016/0014-5793(89)81500-5.
  26. Kolocheva, T. I., Nevinsky, G. A., Volchkova, V. A., Levina, A. S., Khomov, V. V., and Lavrik, O. I. (1989) DNA polymerase I (Klenow fragment): role of the structure and length of a template in enzyme recognition, FEBS Lett., 248, 97-100, doi: 10.1016/0014-5793(89)80439-9.
  27. Garafutdinov, R. R., Burkhanova, G. F., Maksimov, I. V., Sakhabutdinova, A. R. (2023) New method for microRNA detection based on multimerization, Anal. Biochem., 664, 115049, doi: 10.1016/j.ab.2023.115049.
  28. Сахабутдинова А. Р., Чемерис А. В., Гарафутдинов Р. Р. (2023) Обнаружение специфических РНК-мишеней с помощью мультимеризации, Биохимия, 88, 832-840, doi: 10.31857/S032097252305010X.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of model single-stranded trinucleotides (sst) and dinucleotide duplexes (dst)

Download (52KB)
3. Fig. 2. Average docking score values ​​obtained when considering only nucleotides N2 and N3 (the dinucleotides corresponding to the strongest complexes are marked with an asterisk)

Download (466KB)
4. Fig. 3. Diagram of ligand interaction using the example of the Bst exo- complex with dst (the trinucleotide 5'-CAC-3' is given as an example). The amino acids are presented as spheres: purple spheres are amino acids carrying positively charged groups, blue spheres are those containing polar groups, green spheres are hydrophobic, and red spheres are those carrying negatively charged groups; colored lines and arrows show chemical interactions between the amino acids and the environment: red arrows are ionic bonds (salt bridges, sb), blue arrows are hydrogen bonds (H), and no arrows are other weak interactions (+).

Download (320KB)
5. Fig. 4. Scheme of the multimerization process: annealing and extension of primer R on DNA template I, leading to the formation of a double-stranded product of length 1L (step 1), formation of the pseudocyclic DNA structure Ini (step 2), elongation of chains in Ini, formation of a double-stranded product of length 2L (steps 3, 4 and 5b) or annealing and elongation of primer R (steps 3, 4 and 5a), formation of template II (step 5a), displacement of DNA template II and annealing of primer F on it (step 6), formation of full-length amplicons with tandem nucleotide sequences (steps i). Primer F and its complementary regions are shown in black, primer R and its complementary regions are shown in gray

Download (167KB)
6. Fig. 5. Accumulation of multimerization products for templates with different primary structures of terminal fragments (data obtained using Taq buffer are shown). Insert: electrophoretic separation of multimers: 1 – template LM1, 2 – LM2, 3 – LM3, 4 – LM4, 5 – LM5, 6 – LM6, M – 50 bp DNA ladder marker

Download (215KB)
7. Annex 1
Download (57KB)
8. Annex 2
Download (25KB)
9. Annex 3
Download (68KB)

Copyright (c) 2024 Russian Academy of Sciences