The Imidazolium Ionic Liquids Toxicity Is Due to Their Effect on the Plasma Membrane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ionic liquids (ILs) are organic salts with a low melting point, which is due to the fact that alkyl side chains chemically bonded to the ion hinder the crystallization of ILs. The low melting point of ILs has led to their widespread use as relatively harmless solvents. However, ILs have toxic properties, the mechanism of which is largely unknown, so identifying the cellular targets of ILs is of practical importance. In our work, we showed that imidazolium ILs are not able to penetrate model membranes without damaging them. We also found that inactivation of multidrug resistance (MDR) pumps in yeast cells does not increase their sensitivity to imidazolium ILs. The latter indicates that the target of the toxicity of imidazolium ILs is not in the cytoplasm. Thus, our data suggest that the disruption of the plasma membrane barrier function is the main cause of the toxicity of low concentrations of imidazolium ILs. We also showed that supplementation with imidazolium ILs restores the growth of cells with kinetically blocked glycolysis. Our data indicate that IL-induced minor disruption of the plasma membrane may, in some cases, be beneficial for the cells.

Full Text

Restricted Access

About the authors

S. S. Sokolov

Lomonosov Moscow State University

Email: severin@belozersky.msu.ru
Russian Federation, Moscow

E. A. Smirnova

Lomonosov Moscow State University

Email: severin@belozersky.msu.ru
Russian Federation, Moscow

T. I. Rokitskaya

Lomonosov Moscow State University

Email: severin@belozersky.msu.ru
Russian Federation, Moscow

F. F. Severin

Lomonosov Moscow State University

Author for correspondence.
Email: severin@belozersky.msu.ru
Russian Federation, Moscow

References

  1. Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2084, https://doi.org/10.1021/cr980032t.
  2. Kudłak, B., Owczarek, K., and Namieśnik, J. (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents – a review, Environ. Sci. Pollut. Res. Int., 22, 11975-11992, https://doi.org/10.1007/s11356- 015-4794-y.
  3. Ferraz, R., Branco, L. C., Prudêncio, C., Noronha, J. P., and Petrovski, Z. (2011) Ionic liquids as active pharmaceutical ingredients, ChemMedChem, 6, 975-985, https://doi.org/10.1002/cmdc.201100082.
  4. Hough, W. L., Smiglak, M., Rodríguez, H., Swatloski, R. P., Spear, S. K., Daly, D. T., Pernak, J., Grisel, J. E., Carliss, R. D., Soutullo, M. D., Davis, J. H., Jr., and Rogers, R. D. (2007) The third evolution of ionic liquids: active pharmaceutical ingredients, New J. Chem., 31, 1429-1436, https://doi.org/10.1039/B706677P.
  5. Kumar, V., and Malhotra, S. V. (2009) Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids, Bioorg. Med. Chem. Lett., 19, 4643-4646, https://doi.org/10.1016/j.bmcl.2009.06.086.
  6. Dias, A. R., Costa-Rodrigues, J., Fernandes, M. H., Ferraz, R., and Prudêncio, C. (2017) The anticancer potential of ionic liquids, ChemMedChem, 12, 11-18, https://doi.org/10.1002/cmdc.201600480.
  7. Gonçalves, A. R. P., Paredes, X., Cristino, A. F., Santos, F. J. V., and Queirós, C. S. G. P. (2021) Ionic liquids – a review of their toxicity to living organisms, Int. J. Mol. Sci., 22, 5612, https://doi.org/10.3390/ijms22115612.
  8. Maculewicz, J., Świacka, K., Stepnowski, P., Dołżonek, J., and Białk-Bielińska, A. (2022) Ionic liquids as potentially hazardous pollutants: Evidences of their presence in the environment and recent analytical developments, J. Hazard Mater., 437, 129353, https://doi.org/10.1016/j.jhazmat.2022.129353.
  9. Sanches, M. V., Freitas, R., Oliva, M., Cuccaro, A., Monni, G., Mezzetta, A., Guazzelli, L., and Pretti, C. (2023) Toxicity of ionic liquids in marine and freshwater microorganisms and invertebrates: state of the art, Environ. Sci. Pollut. Res. Int., 30, 39288-39318, https://doi.org/10.1007/s11356-023-25562-z.
  10. Flieger, J., and Flieger, M. (2020) Ionic liquids toxicity-benefits and threats, Int. J. Mol. Sci., 21, 6267, https:// doi.org/10.3390/ijms21176267.
  11. Docherty, K. M., and Kulpa, C. F., Jr. (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids, Green Chem., 7, 185-189, https://doi.org/10.1039/B419172B.
  12. Ranke, J., Mölter, K., Stock, F., Bottin-Weber, U., Poczobutt, J., Hoffmann, J., Ondruschka, B., Filser, J., and Jastorff, B. (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays, Ecotoxicol. Environ. Saf., 58, 396-404, https://doi.org/10.1016/ S0147-6513(03)00105-2.
  13. Couling, D. J., Bernot, R. J., Docherty, K. M., Dixon, J. K., and Maginn, E. J. (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling, Green Chem., 8, 82-90, https://doi.org/10.1039/B511333D.
  14. Stasiewicz, M., Mulkiewicz, E., Tomczak-Wandzel, R., Kumirska, J., Siedlecka, E. M., Gołebiowski, M., Gajdus, J., Czerwicka, M., and Stepnowski, P. (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level, Ecotoxicol. Environ. Saf., 71, 157-165, https://doi.org/10.1016/j.ecoenv. 2007.08.011.
  15. Garcia, M. T., Gathergood, N., and Scammells, P. J. (2005) Biodegradable ionic liquids: Part II. Effect of the anion and toxicology, Green Chem., 7, 9, https://doi.org/10.1039/b411922c.
  16. Pham, T. P. T., Cho, C.-W., and Yun, Y.-S. (2010) Environmental fate and toxicity of ionic liquids: a review, Water Res., 44, 352-372, https://doi.org/10.1016/j.watres.2009.09.030.
  17. Kolaczkowski, M., van der Rest, M., Cybularz-Kolaczkowska, A., Soumillion, J. P., Konings, W. N., and Goffeau, A. (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p, J. Biol. Chem., 271, 31543-31548, https://doi.org/10.1074/jbc.271.49.31543.
  18. Gros, P., Talbot, F., Tang-Wai, D., Bibi, E., and Kaback, H. R. (1992) Lipophilic cations: a group of model substrates for the multidrug-resistance transporter, Biochemistry, 31, 1992-1998, https://doi.org/10.1021/bi00122a014.
  19. Fetisova, E. K., Avetisyan, A. V., Izyumov, D. S., Korotetskaya, M. V., Chernyak, B. V., and Skulachev, V. P. (2010) Mitochondria-targeted antioxidant SkQR1 selectively protects MDR (Pgp 170)-negative cells against oxidative stress, FEBS Lett., 584, 562-566, https://doi.org/10.1016/j.febslet.2009.12.002.
  20. Sokolov, S., Zyrina, A., Akimov, S., Knorre, D., and Severin, F. (2023) Toxic effects of penetrating cations, Membranes, 13, 841, https://doi.org/10.3390/membranes13100841.
  21. Sokolov, S. S., Smirnova, E. A., Markova, O. V., Kireeva, N. A., Kirsanov, R. S., Khailova, L. S., Knorre, D. A., and Severin, F. F. (2020) Lipophilic cations rescue the growth of yeast under the conditions of glycolysis overflow, Biomolecules, 10, 1345, https://doi.org/10.3390/biom10091345.
  22. Galkina, K. V., Besedina, E. G., Zinovkin, R. A., Severin, F. F., and Knorre, D. A. (2018) Penetrating cations induce pleiotropic drug resistance in yeast, Sci. Rep., 8, 8131, https://doi.org/10.1038/s41598-018-26435-z.
  23. Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K. (2003) Global analysis of protein localization in budding yeast, Nature, 425, 686-691, https://doi.org/10.1038/nature02026.
  24. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem., 67, 534-535, https://doi.org/10.1021/j100796a529.
  25. Liberman, E. A., and Topaly, V. P. (1969) Permeability of bimolecular phospholipid membranes for fat-soluble ions [in Russian], Biofizika, 14, 452-461.
  26. Ebert, A., Hannesschlaeger, C., Goss, K.-U., and Pohl, P. (2018) Passive permeability of planar lipid bilayers to organic anions, Biophys. J., 115, 1931-1941, https://doi.org/10.1016/j.bpj.2018.09.025.
  27. Rokitskaya, T. I., Aleksandrova, E. V., Korshunova, G. A., Khailova, L. S., Tashlitsky, V. N., Luzhkov, V. B., and Antonenko, Y. N. (2022) Membrane permeability of modified butyltriphenylphosphonium cations, J. Phys. Chem. B, 126, 412-422, https://doi.org/10.1021/acs.jpcb.1c08135.
  28. Il’yasova, T. M., Rokitskaya, T. I., Severina, I. I., Antonenko, Y. N., and Skulachev, V. P. (2012) Substitution of ether linkage for ester bond in phospholipids increases permeability of bilayer lipid membrane for SkQ1-type penetrating cations, Biochemistry (Moscow), 77, 1038-1043, https://doi.org/10.1134/S0006297912090118.
  29. Pickar, A. D., and Benz, R. (1978) Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures, J. Membr. Biol., 44, 353-376, https://doi.org/10.1007/BF01944229.
  30. Rokitskaya, T. I., Kotova, E. A., Luzhkov, V. B., Kirsanov, R. S., Aleksandrova, E. V., Korshunova, G. A., Tashlitsky, V. N., and Antonenko, Y. N. (2021) Lipophilic ion aromaticity is not important for permeability across lipid membranes, Biochim. Biophys. Acta Biomembr., 1863, 183483, https://doi.org/10.1016/j.bbamem. 2020.183483.
  31. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663-668, https://doi.org/10.1073/pnas.0910216107.
  32. Rokitskaya, T. I., Khailova, L. S., Korshunova, G. A., and Antonenko, Y. N. (2023) Efficiency of mitochondrial uncoupling by modified butyltriphenylphosphonium cations and fatty acids correlates with lipophilicity of cations: Protonophoric vs leakage mechanisms, Biochim. Biophys. Acta Biomembr., 1865, 184183, https://doi.org/ 10.1016/j.bbamem.2023.184183.
  33. Kean, L. S., Grant, A. M., Angeletti, C., Mahé, Y., Kuchler, K., Fuller, R. S., and Nichols, J. W. (1997) Plasma membrane translocation of fluorescent-labeled phosphatidylethanolamine is controlled by transcription regulators, PDR1 and PDR3, J. Cell Biol., 138, 255-270, https://doi.org/10.1083/jcb.138.2.255.
  34. Thakur, J. K., Arthanari, H., Yang, F., Pan, S.-J., Fan, X., Breger, J., Frueh, D. P., Gulshan, K., Li, D. K., Mylonakis, E., Struhl, K., Moye-Rowley, W. S., Cormack, B. P., Wagner, G., and Näär, A. M. (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi, Nature, 452, 604-609, https://doi.org/10.1038/ nature06836.
  35. Hohmann, S., Bell, W., Neves, M. J., Valckx, D., and Thevelein, J. M. (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis, Mol. Microbiol., 20, 981-991, https://doi.org/10.1111/j.1365-2958.1996.tb02539.x.
  36. Bell, W., Klaassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., Van der Zee, P., and Wiemken, A. (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation, Eur. J. Biochem., 209, 951-959, https://doi.org/10.1111/j.1432-1033.1992.tb17368.x.
  37. Vuorio, O. E., Kalkkinen, N., and Londesborough, J. (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae, Eur. J. Biochem., 216, 849-861, https://doi.org/10.1111/j.1432-1033.1993.tb18207.x.
  38. Van Heerden, J. H., Wortel, M. T., Bruggeman, F. J., Heijnen, J. J., Bollen, Y. J. M., Planqué, R., Hulshof, J., O’Toole, T. G., Wahl, S. A., and Teusink, B. (2014) Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells, Science, 343, 1245114, https://doi.org/10.1126/science.1245114.
  39. Thevelein, J. M., and Hohmann, S. (1995) Trehalose synthase: guard to the gate of glycolysis in yeast?, Trends Biochem. Sci., 20, 3-10, https://doi.org/10.1016/s0968-0004(00)88938-0.
  40. Teusink, B., Walsh, M. C., van Dam, K., and Westerhoff, H. V. (1998) The danger of metabolic pathways with turbo design, Trends Biochem. Sci., 23, 162-169, https://doi.org/10.1016/s0968-0004(98)01205-5.
  41. Gibney, P. A., Schieler, A., Chen, J. C., Bacha-Hummel, J. M., Botstein, M., Volpe, M., Silverman, S. J., Xu, Y., Bennett, B. D., Rabinowitz, J. D., and Botstein, D. (2018) Common and divergent features of galactose-1-phosphate and fructose-1-phosphate toxicity in yeast, Mol. Biol. Cell, 29, 897-910, https://doi.org/10.1091/mbc.E17-11-0666.
  42. Peeters, K., Van Leemputte, F., Fischer, B., Bonini, B. M., Quezada, H., Tsytlonok, M., Haesen, D., Vanthienen, W., Bernardes, N., Gonzalez-Blas, C. B., et al. (2017) Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras, Nat. Commun., 8, 922, https://doi.org/10.1038/s41467-017-01019-z.
  43. Knorre, D. A., Galkina, K. V., Shirokovskikh, T., Banerjee, A., and Prasad, R. (2020) Do multiple drug resistance transporters interfere with cell functioning under normal conditions?, Biochemistry (Moscow), 85, 1560-1569, https://doi.org/10.1134/S0006297920120081.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulae of the most toxic imidazolium ILs: C12Mim-Cl (a); C14Mim-Cl (b) and C16Mim-Cl (c)

Download (100KB)
3. Fig. 2. Recordings of the kinetics of the current through the BLM after applying a voltage of 50 mV at the initial time point before (light grey curves) and after the addition of 10 μM (black curves) and 20 μM (dark grey curves) C12Mim-Cl. BLMs were formed from diphytanyl-FC (a) or diphytanoyl-FC (b)

Download (172KB)
4. Fig. 3. Measurement of the ability of imidazolium ILs to transfer protons across the liposomal membrane in a model system of liposomes loaded with the fluorescent probe pyranine. a - Kinetics of pH change within liposomes in control (curve 1, control), in the presence of 0.1 μM CCF (curve 2), in the presence of 2 μM P66614 (curve 3) and 20 μM P66614 (curve 4). b - Kinetics of pH change within liposomes in control (curve 1), in the presence of 20 μM C12Mim-Cl (curve 2), 2 μM (curve 3) or 20 μM (curve 4) C14Mim-Cl

Download (260KB)
5. Fig. 4. ILs increase Pdr5-GFP content. a - Comparison of Pdr5-GFP increase 1 h after addition of ILs and the standard Pdr5-GFP inducer clotrimazole by flow cytometry. The X-axis is plotted as the logarithmic scale of substance concentration in μM; the Y-axis is the logarithmic scale of Pdr5-GFP fluorescence in cells relative to cells without added substances (value 0). Each point is an independent biological repeat. b - Light and fluorescence microscopy of cells containing Pdr5-GFP 1 h after addition of C12Mim-Cl and the standard Pdr5-GFP inducer clotrimazole. Size cut-off is 5 μm

Download (243KB)
6. Fig. 5. MDU proteins do not affect the growth rate of S. cerevisiae in the presence of different concentrations of ILs. Typical cell culture growth curves of S. cerevisiae wild-type W303 and delta strain pdr1pdr3 cells with impaired MLU activation. X-axis is time in hours; Y-axis is OD at 550 nm of cell culture

Download (374KB)
7. Fig. 6. Comparison of S. cerevisiae cell survival after exposure to imidazolium ILs, C12Mim-Cl, C14Mim-Cl and C16Mim-Cl, by CFU number (blue curves) and the proportion of PI-negative cells (red curves). X-axis shows PI concentration in μM; Y-axis shows survival relative to control without addition of substances, in per cent

Download (142KB)
8. Fig. 7. ILs are able to restore growth of delta tps1 cells in the presence of glucose. The tested concentrations of ILs that do not induce stimulation are shown in grey. Concentrations corresponding to the restoration of delta tps1 strain growth on YP-ethanol medium in the presence of glucose are shown in green colour

Download (139KB)

Copyright (c) 2024 Russian Academy of Sciences