Design, In Silico Evaluation, and Determination of Antitumor Activity of Potential Inhibitors Against Protein Kinases: Application to Bcr-Abl Tyrosine Kinase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is currently still an unmet need for effective and safe drugs to treat patients with resistance and intolerance to clinically used drugs. In this work, 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid were designed followed by in silico assessment of the inhibitory potential of these compounds against Bcr-Abl tyrosine kinase and determination of their antitumor activity on cell models of the K562 (chronic myeloid leukemia), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) lines. As a result of the joint analysis of computational and experimental data, three compounds exhibiting antitumor activity against cells of the K562 and HL-60 lines were identified. A lead compound demonstrating effective inhibition of the growth of these cells was found, as evidenced by the low values of IC50 equal to 2.8 ± 0.8 μM (K562) and 3.5 ± 0.2 μM (HL-60). The results obtained indicate that the identified compounds form good scaffolds for the design of novel, effective and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.

Full Text

Restricted Access

About the authors

E. V. Koroleva

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: alexande.andriano@yandex.ru
Belarus, Minsk

A. L. Ermolinskaya

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: alexande.andriano@yandex.ru
Belarus, Minsk

Zh. V. Ignatovich

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: alexande.andriano@yandex.ru
Belarus, Minsk

Yu. V. Kornoushenko

Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus

Email: alexande.andriano@yandex.ru
Belarus, Minsk

O. V. Panibrat

Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus

Email: alexande.andriano@yandex.ru
Belarus, Minsk

V. I. Potkin

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Email: alexande.andriano@yandex.ru
Belarus, Minsk

A. M. Andrianov

Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus

Author for correspondence.
Email: alexande.andriano@yandex.ru
Belarus, Minsk

References

  1. Lugo, T. G., Pendergast, A. M., Muller, A. J., and Witte, O. N. (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products, Science, 247, 1079-1082, https://doi.org/10.1126/science.2408149.
  2. Deininger, M. W., Vieira, S., Mendiola, R., Schultheis, B., Goldman, J. M., and Melo, J. V. (2000) BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia, Cancer Res., 60, 2049-2055.
  3. Quintás-Cardama, A., and Cortes, J. (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia, Blood, 113, 1619-1630, https://doi.org/10.1182/blood-2008-03-144790.
  4. Druker, B. J., Sawyers, C. L., Kantarjian, H., Resta, D. J., Reese, S. F., Ford, J. M., Capdeville, R., and Talpaz, M. (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome, N. Eng. J. Med., 344, 1038-1042, https://doi.org/10.1056/NEJM200104053441402.
  5. Ottmann, O. G., and Wassmann, B. (2002) Imatinib in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukaemia: current status and evolving concepts, Best Pract. Res. Clin. Haematol., 15, 757-769, https://doi.org/10.1053/beha.2002.0233.
  6. Buchdunger, E., O’Reilley, T., and Wood, J. (2002) Pharmacology of imatinib (STI571), Eur. J. Cancer, 38, S28-S36, https://doi.org/10.1016/s0959-8049(02)80600-1.
  7. Peng, B., Lloyd, P., and Schran, H. (2005) Clinical pharmacokinetics of imatinib, Clin. Pharmacokinet., 44, 879-894, https://doi.org/10.2165/00003088-200544090-00001.
  8. Druker, B. J. (2004) Imatinib as a paradigm of targeted therapies, Adv. Cancer Res., 91, 1-30, https://doi.org/10.1016/S0065-230X(04)91001-9.
  9. Kantarjian, H., Sawyers, C., Hochhaus, A., Guilhot, F., Schiffer, C., Gambacorti-Passerini, C., Niederwieser, D., Resta, D., Capdeville, R., Zoellner, U., Talpaz, M., Druker, B., Goldman, J., O’Brien, S. G., Russell, N., Fischer, T., Ottmann, O., Cony-Makhoul, P., Facon, T., Stone, R., Miller, C., Tallman, M., Brown, R., Schuster, M., Loughran, T., Gratwohl, A., Mandelli, F., Saglio, G., Lazzarino, M., Russo, D., Baccarani, M., Morra, E, and International STI571 CML Study Group (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia, N. Eng. J. Med., 346, 645-652, https://doi.org/10.1056/NEJMoa011573.
  10. Druker, B. J., Guilhot, F., O’Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann, N., Deininger, M. W. N., Silver, R. T., Goldman, J. M., Stone, R. M., Cervantes, F., Hochhaus, A., Powell, B. L., Gabrilove, J. L., Rousselot, P., Reiffers, J., Cornelissen, J. J., Hughes, T., Agis, H., Fischer, T., Verhoef, G., Shepherd, J., Saglio, G., Gratwohl, A., Nielsen, J. L., Radich, J. P., Simonsson, B., Taylor, K., Baccarani, M., So, C., Letvak, L., Larson, R. A., and IRIS Investigators (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia, N. Eng. J. Med., 355, 2408-2417, https://doi.org/10.1056/NEJMoa062867.
  11. Hochhaus, A., Larson, R. A., Guilhot, F., Radich, J. P., Branford, S., Hughes, T. P., Baccarani, M., Deininger, M. W., Cervantes, F., Fujihara, S., Ortmann, C.-E., Menssen, H. D., Kantarjian, H., O’Brien, S. G., Druker, B. J., and IRIS Investigators (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia, N. Eng. J. Med., 376, 917-927, https://doi.org/10.1056/NEJMoa1609324.
  12. Bhullar, K. S., Lagarón, N. O., McGowan, E. M., Parmar, I., Jha, A., Hubbard, B. P., and Vasantha, R. H. P. (2018) Kinase-targeted cancer therapies: progress, challenges and future directions, Mol. Cancer, 17, 1-20, https://doi.org/ 10.1186/s12943-018-0804-2.
  13. Patel, A. B., O’Hare, T., and Deininger, M. W. (2017) Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors, Hematol. Oncol. Clin. North Am., 31, 589-612, https://doi.org/10.1016/j.hoc.2017.04.007.
  14. Liu, J., Zhang, Y., Huang, H., Lei, X., Tang, G., Cao, X., and Peng, J. (2021) Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation, Chem. Biol. Drug Des., 97, 649-664, https://doi.org/10.1111/cbdd.13801.
  15. Koroleva, E. V., Ignatovich, Z. I., Sinyutich, Y. V., and Gusak, K. N. (2016) Aminopyrimidine derivatives as protein kinases inhibitors. Molecular design, synthesis, and biologic activity, Russ. J. Org. Chem., 52, 139-177, https://doi.org/ 10.1134/S1070428016020019.
  16. Roskoski, R. Jr (2022) Properties of FDA-approved small molecule protein kinase inhibitors: a 2023 update, Pharmacol. Res., 106552, https://doi.org/10.1016/j.phrs.2022.106552.
  17. Cortes, J., and Lang, F. (2021) Third-line therapy for chronic myeloid leukemia: current status and future directions, J. Hematol. Oncol., 14, 1-18, https://doi.org/10.1186/s13045-021-01055-9.
  18. Senapati, J., Sasaki, K., Issa, G. C., Lipton, J. H., Radich, J. P., Jabbour, E., and Kantarjian, H. M. (2023) Management of chronic myeloid leukemia in 2023–common ground and common sense, Blood Cancer J., 13, 58, https://doi.org/10.1038/s41408-023-00823-9.
  19. Tan, F. H., Putoczki, T. L., Stylli, S. S., and Luwor, R. B. (2019) Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies, Onco Targets Ther., 12, 635-645, https://doi.org/10.2147/OTT.S189391.
  20. Ferguson, F. M., and Gray, N. S. (2018) Kinase inhibitors: the road ahead, Nat. Rev. Drug Discov., 17, 353-377, https://doi.org/10.1038/nrd.2018.21.
  21. Proschak, E., Stark, H., and Merk, D. (2018) Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds, J. Med. Chem., 62, 420-444, https://doi.org/10.1021/acs.jmedchem.8b00760.
  22. Arya, G. C., Kaur, K., and Jaitak, V. (2021) Isoxazole derivatives as anticancer agent: a review on synthetic strategies, mechanism of action and SAR studies, Eur. J. Med. Chem., 221, 113511, https://doi.org/10.1016/j.ejmech. 2021.113511.
  23. Köstler, W. J., and Zielinski, C. C. (2015) Targeting Receptor Tyrosine Kinases in Cancer, in Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease, New York, Spring, pp. 78-225.
  24. Maurer, G., Tarkowski, B., and Baccarini, M. (2011) Raf kinases in cancer-roles and therapeutic opportunities, Oncogene, 30, 3477-3488, https://doi.org/10.1038/onc.2011.160.
  25. Schönherr, H., and Cernak, T. (2013) Profound methyl effects in drug discovery and a call for new C–H methylation reactions, Angew. Chem. Int. Ed. Engl., 52, 12256-12267, https://doi.org/10.1002/anie.201303207.
  26. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011) Open Babel: An open chemical toolbox, J. Cheminform., 3, 1-14, https://doi.org/10.1186/1758-2946-3-33.
  27. Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., III, and Skiff, W. M. (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114, 10024-10035, https://doi.org/10.1021/ja00051a040.
  28. Daina, A., Michielin, O., and Zoete, V. (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7, 42717, https://doi.org/10.1038/srep42717.
  29. Center for Computational Structural Biology. MGL Tools. URL: https://ccsb.scripps.edu/mgltools/, Accessed October 21, 2023.
  30. Trott, O., and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455-461, https://doi.org/10.1002/jcc.21334.
  31. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605-1612, https://doi.org/10.1002/jcc.20084.
  32. Shen, C., Hu, Y., Wang, Z., Zhang, X., Zhong, H., Wang, G., Yao, X., Xu, L., Cao, D., and Hou, T. (2021) Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions, Brief. Bioinf., 22, 497-514, https://doi.org/10.1093/bib/bbz173.
  33. Durrant, J. D., and McCammon, J. A. (2011) NNScore 2.0: A neural-network receptor–ligand scoring function, J. Chem. Inf. Model., 51, 2897-2903, https://doi.org/10.1021/ci2003889.
  34. Durrant, J. D., and McCammon, J. A. (2011) BINANA: A novel algorithm for ligand-binding characterization, J. Mol. Graph. Model., 29, 888-893, https://doi.org/10.1016/j.jmgm.2011.01.004.
  35. Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E. III, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Gilson, M. K., and Kollman, P. A. (2018) AMBER 2018, University of California.
  36. Genheden, S., and Ryde, U. (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinity, Expert Opin. Drug. Discov., 10, 449-461, https://doi.org/10.1517/17460441.2015.1032936.
  37. Xu, L., Sun, H., Li, Y., Wang, J., and Hou, T. (2013) Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models, J. Phys. Chem. B, 117, 8408-8421, https://doi.org/10.1021/jp404160y.
  38. Sun, H., Li, Y., Tian, S., Xu, L., and Hou, T. (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set, Phys. Chem. Chem. Phys., 16, 16719-16729, https://doi.org/10.1039/c4cp01388c.
  39. Ignatovich, Z. V., Ermolinskaya, A. L., Kletskov, A. V., Potkin, V. I., and Koroleva, E. V. (2018) Synthesis of new amides of isoxazole-and isothiazole-substituted carboxylic acids containing an arylaminopyrimidine fragment, Russ. J. Org. Chem., 54, 1218-1222, https://doi.org/10.1134/S107042801808016X.
  40. Al-Nasiry, S., Geusens, N., Hanssens, M., Luyten, C., and Pijnenborg, R. (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells, Hum. Reprod., 22, 1304-1309, https://doi.org/10.1093/humrep/dem011.
  41. Agafonov, R.V., Wilson, C., Otten, R., Buosi, V., and Kern, D. (2014) Energetic dissection of Gleevec’s selectivity toward human tyrosine kinases, Nat. Struct. Mol. Biol., 21, 848-853, https://doi.org/10.1038/nsmb.2891.
  42. Lipinski, C. A. (2004) Lead- and drug-like compounds: the rule-of-five revolution, Drug Discov. Today Technol., 1, 337-341, https://doi.org/10.1016/j.ddtec.2004.11.007.
  43. Lipinski, C.A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 46, 3-26, https://doi.org/10.1016/s0169-409x(00)00129-0.
  44. Banerjee, P., Eckert, A. O., Schrey, A. K., and Preissner, R. (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res., 46(W1), W257-W263, https://doi.org/10.1093/nar/gky318.
  45. Hassan Baig, M., Ahmad, K., Roy, S., Mohammad Ashraf, J., Adil, M., Siddiqui, M. H., Khan, S., Kamal, M. A., Provazník, I., and Choi, I. (2016) Computer aided drug design: success and limitations, Curr. Pharm. Des., 22, 572-581, https://doi.org/10.2174/1381612822666151125000550.
  46. Desai, P. V. (2016) The integration of computational chemistry during drug discovery to drive decisions: are we there yet? Future Med. Chem., 8, 1717-1720, https://doi.org/10.4155/fmc-2016-0161.
  47. Jimenez, J. J., Chale, R. S., Abad, A. C., and Schally, A. V. (2020) Acute promyelocytic leukemia (APL): a review of the literature. Oncotarget, 11, 992-1003, https://doi.org/10.18632/oncotarget.27513.
  48. Parcha, P., Sarvagalla, S., Madhuri, B., Pajaniradje, S., Baskaran, V., Coumar, M. S., and Rajasekaran, B. (2017) Identification of natural inhibitors of Bcr-Abl for the treatment of chronic myeloid leukemia, Chem. Biol. Drug Des., 90, 596-608, https://doi.org/10.1111/cbdd.12983.
  49. Reddy, E. P., and Aggarwal, A. K. (2012) The ins and outs of bcr-abl inhibition, Genes Cancer, 3, 447-454, https://doi.org/10.1177/1947601912462126.
  50. Manley, P. W., Cowan-Jacob, S. W., Fendrich, G., and Mestan, J. (2005) Molecular interactions between the highly selective pan-Bcr-Abl inhibitor, AMN107, and the tyrosine kinase domain of Abl, Blood, 106, 3365, https:// doi.org/10.1182/blood.V106.11.3365.3365.
  51. Sohraby, F., Bagheri, M., Aliyar, M., and Aryapour, H. (2017) In silico drug repurposing of FDA-approved drugs to predict new inhibitors for drug resistant T315I mutant and wild-type BCR-ABL1: a virtual screening and molecular dynamics study, J. Mol. Graph. Model., 74, 234-240, https://doi.org/10.1016/j.jmgm.2017.04.005.
  52. İş, Y. S. (2021) Elucidation of ligand/protein interactions between BCR-ABL tyrosine kinase and some commercial anticancer drugs via DFT methods, J. Comput. Biophys. Chem., 20, 433-447, https://doi.org/10.1142/S273741652150023X.
  53. Hsu, H. H., Hsu, Y. C., Chang, L. J., and Yang, J. M. (2017) An integrated approach with new strategies for QSAR models and lead optimization, BMC Genom., 18 (Suppl 2), 104, https://doi.org/10.1186/s12864-017-3503-2.
  54. Fu, L., Yang, Z. Y., Yang, Z. J., Yin, M. Z., Lu, A. P., Chen, X., Liu, S., Hou, T. J., and Cao, D. S. (2021) QSAR-assisted-MMPA to expand chemical transformation space for lead optimization, Brief. Bioinform., 22, bbaa374, https://doi.org/10.1093/bib/bbaa374.
  55. Ayaz, M. S., Bhupal, R., Sharma, P., Sahu, A., Singh, P., Gupta, G. D., and Asati, V. (2023) Recent updates on structural aspects of ALK inhibitors as an anticancer agent, Anti-Cancer Agents Med. Chem., 23, 900-921, https://doi.org/10.2174/1871520623666230110114620.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chemical structures of the designed compounds

Download (203KB)
3. Fig. 2. Time dependences of RMSD values (Å) calculated between the dynamic and starting structures of complexes of compounds I-V with tyrosine kinase Bcr-Abl (blue line) and Bcr-AblT315I (blue line). In the upper right corner, the mean RMSD values and standard deviations for the native enzyme and in the lower right corner for its mutant form are indicated. The corresponding data for the control compounds and the enzyme in the free state are also given

Download (341KB)
4. Fig. 3. RMSD heat maps obtained for complexes of tyrosine kinase Bcr-Abl (a) and its mutant form T315I (b) with compounds I-V, control inhibitors and the enzyme in the free state at different times of CBM modelling. RMSD values were calculated for tyrosine kinase main chain atoms. Time is measured on the abscissa and ordinate axes. The RMSD value between the structures of the complexes at times t1 and t2 is at the intersection of the values of t1 on the abscissa axis and t2 on the ordinate axis

Download (738KB)
5. Fig. 4. Time dependences of binding free energy for complexes of compounds I-V with tyrosine kinase Bcr-Abl (blue line) and Bcr-AblT315I (blue line). The orange and yellow lines show a simple moving average with a window size of 20 ns. The mean binding free energy and their corresponding standard deviations calculated for native and mutant Bcr-Abl tyrosine kinase, respectively, are shown above and below. The corresponding data for the control compounds are also given

Download (342KB)
6. Fig. 5. Dependences of cell viability (% of control) on the concentration of tested compounds (log concentration [mol/litre]). III* - Salt form of compound III in the form of methanesulfonate

Download (241KB)
7. Fig. 6. Complexes of compounds I-III with native and mutant tyrosine kinase Bcr-Abl constructed by molecular docking. The compounds are represented by the ball-and-stick-ball model. Residues of the enzyme that form interatomic contacts with ligands are marked. Residues involved in hydrogen bonding are labelled with the stick model. Hydrogen bonds are shown as red dashed lines. The wire model is used to denote the residues of tyrosine kinase Bcr-Abl forming van der Waals contacts

Download (689KB)

Copyright (c) 2024 Russian Academy of Sciences