Formation of Amyloid-Like Conformational States of β-Structured Membrane Proteins on the Example of the OmpF Porin from the Yersinia pseudotuberculosis Outer Membrane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work presents the results of an in vitro and in silico study of the formation of amyloid-like structures under harsh denaturing conditions by the nonspecific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with a β-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with an acidic pH value at elevated temperature, followed by long-term incubation at room temperature is necessary. After heating at 95 °C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of the tertiary and secondary structure of the protein, which are accompanied by an increase in the content of the total β-structure and a sharp decrease in the value of the characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to the formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of changes in intrinsic fluorescence during protein aggregation suggest that during the formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only areas with an internally disordered structure corresponding to the external loops of the porin, but also the main framework of the molecule, which has a rigid spatial structure inherent to β-barrel.

Full Text

Restricted Access

About the authors

O. D. Novikova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: novolga_05@mail.ru
Russian Federation, Vladivostok

T. V. Rybinskaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok

E. A. Zelepuga

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok

V. N. Uversky

University of South Florida

Email: novolga_05@mail.ru
United States, Tampa

N. Yu. Kim

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok

E. A. Chingizova

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok

E. S. Menchinskaya

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok

V. A. Khomenko

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok

D. K. Chistyulin

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: novolga_05@mail.ru
Russian Federation, Vladivostok

O. Yu. Portnyagina

G.B. Elyakov Pacific Institute of Bioorganic Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: odd64@mail.ru
Russian Federation, Vladivostok

References

  1. Dobson, C. M. (2003) Protein folding and misfolding, Nature, 426, 884-890, https://doi.org/10.1038/nature02261.
  2. Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 75, 333-366, https://doi.org/10.1146/annurev.biochem.75.101304.123901.
  3. Ramirez-Alvarado, M., Merkel, J. S., and Regan, L. (2000) A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro, Proc. Natl. Acad. Sci. USA, 97, 8979-8984, https://doi.org/10.1073/pnas.15009179.
  4. Smith, D. P., Jones, S., Serpell, L. C., Sunde, M., and Radford, S. E. (2003) A systematic investigation into the effect of protein destabilization on beta 2-microglobulin amyloid formation, J. Mol. Biol., 330, 943-954, https://doi.org/ 10.1016/S0022-2836(03)00687-9.
  5. Sigurdsson, E. M., Wisniewski, T., and Frangione, B. (2002) Infectivity of amyloid diseases, Trends Mol. Med., 8, 411-413, https://doi.org/10.1016/S1471-4914(02)02403-6.
  6. Salahuddin, P., Fatima, M. T., Uversky, V. N., Khan, R. H., Islam, Z., and Furkan, M. (2021) The role of amyloids in Alzheimer’s and Parkinson’s diseases, Int. J. Biol. Macromol., 190, 44-55, https://doi.org/10.1016/j.ijbiomac. 2021.08.197.
  7. Litvinovich, S. V., Brew, S. A., Aota, S., Akiyama, S. K., Haudenschild, C., and Ingham, K. C. (1998) Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module, J. Mol. Biol., 280, 245-258, https://doi.org/10.1006/jmbi.1998.1863.
  8. Gross, M., Wilkins, D. K., Pitkeathly, M. C., Chung, E. W., Higham, C., Clark, A., and Dobson, C. M. (1999) Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB, Protein Sci., 8, 1350-1357, https://doi.org/10.1110/ps.8.6.1350.
  9. Marcoleta, A., Wien, F., Arluison, V., Lagos, R., and Giraldo, R. (2019) Bacterial amyloids, eLS, 1-9, https:// doi.org/10.1002/9780470015902.a0028401.
  10. Kosolapova, A. O., Antonets, K. S., Belousov, M. V., and Nizhnikov, A. A. (2020) Biological functions of prokaryotic amyloids in interspecies interactions: facts and assumptions, Int. J. Mol. Sci., 21, 7240, https://doi.org/10.3390/ijms21197240.
  11. Molina-García, L., Gasset-Rosa, F., Moreno-del Álamo, M., de la Espina, S., and Giraldo, R. (2018) Addressing intracellular amyloidosis in bacteria with RepA-WH1, a prion-like protein, Methods Mol. Biol., 1779, 289-311, https://doi.org/10.1007/978-1-4939-7816-8_18.
  12. Bhattacharya, M., Jain, N., and Mukhopadhyay, S. (2011) Insights into the mechanism of aggregation and fibril formation from bovine serum albumin, J. Phys. Chem. B, 115, 14, 4195-4205, https://doi.org/10.1021/jp111528c.
  13. McParland, V. J., Kalverda, A. P., Homans, S. W., and Radford, S. E. (2002) Structural properties of an amyloid precursor of beta (2)-microglobulin, Nat. Struct. Biol., 9, 326-331. https://doi.org/10.1038/nsb791.
  14. Gopalswamy, M., Kumar, A., Adler, J., Baumann, M., Henze, M., Kumar, S. T., Fändrich, M., Scheidt, H. A., Huster, D., and Balbach, J. (2015) Structural characterization of amyloid fibrils from the human parathyroid hormone, Biochim. Biophys. Acta, 1854, 249-257, https://doi.org/10.1016/j.bbapap.2014.12.020.
  15. Bellesia, G., and Shea, J.-E. (2009) Diversity of kinetic pathways in amyloid fibril formation, J. Chem. Phys., 131, 111102, https://doi.org/10.1063/1.3216103.
  16. Friedman, R., and Caflisch, A. (2011) Surfactant effects on amyloid aggregation kinetics, J. Mol. Biol., 414, 303-312, https://doi.org/10.1016/j.jmb.2011.10.011.
  17. Grigolato, F., and Arosio, P. (2021) The role of surfaces on amyloid formation, Biophys. Chem., 270, 106533, https://doi.org/10.1016/j.bpc.2020.106533.
  18. Chiti, F., Webster, P., Taddei, N., and Dobson, C. M. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils, Proc. Natl. Acad. Sci. USA, 96, 3590-3594, https://doi.org/10.1073/pnas.96.7.3590.
  19. Oldfield, C. J., and Dunker, A. K. (2014) Intrinsically disordered proteins and intrinsically disordered protein regions, Annu. Rev. Biochem., 83, 553-584, https://doi.org/10.1146/annurev-biochem-072711-164947.
  20. Cornish, J., Chamberlain, S. G., Owen, D., and Mott, H. R. (2020) Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem. Soc. Trans., 48, 2669-2689, https://doi.org/10.1042/BST20200467.
  21. Uversky, V. N. (2019) Protein intrinsic disorder and structure-function continuum, Prog. Mol. Biol. Transl. Sci., 166, 1-17, https://doi.org/10.1016/bs.pmbts.2019.05.003.
  22. Delcour, A. H. (2003) Solute uptake through general porins, Front. Biosci. Landmark, 8, 1055-1071, https:// doi.org/10.2741/1132.
  23. Haltia T., and Freire, E. (1995) Forces and factors that contribute to the structural stability of membrane proteins, Biochim. Biophys. Acta, 1241, 295-322, https://doi.org/10.1016/0304-4157(94)00161-6.
  24. Pogozheva, I. D., Tristram-Nagle, S., Mosberg, H., and Lomize, A. L. (2013) Structural adaptations of proteins to different biological membranes, Biochim. Biophys. Acta, 1828, 2592-2608, https://doi.org/10.1016/j.bbamem.2013.06.023.
  25. Ziervogel, B. K., and Roux, B. (2013) The binding of antibiotics in OmpFporin, Structure, 21, 76-87, https:// doi.org/10.1016/j.str.2012.10.014.
  26. Bajaj, H., Acosta-Gutierrez, S., Bodrenko, I., Malloci, G., Scorciapino, M. A., Winterhalte, M., and Ceccarelli, M. (2017) Bacterial outer membrane porins as electrostatic nanosieves: Exploring transport rules of small polar molecules, ACS Nano, 11, 5465-5473, https://doi.org/10.1021/acsnano.6b08613.
  27. Chistyulin, D. K., Zelepuga, E. A., Novikov, V. L., Balaneva, N. N., Glazunov, V. P., Chingizova, E. A., Khomenko, V. A., and Novikova, O. D. (2023) Molecular model of norfloxacin translocation through Yersinia pseudotuberculosis porin OmpF channel: electrophysiological and molecular modeling study, Biochemistry (Moscow) Suppl. Ser. A Membr. Cell Biol., 17, S20-S38, https://doi.org/10.1134/S1990747823070024.
  28. Danoff, E. J., and Fleming, K. G. (2015) Aqueous, unfolded OmpA forms amyloid-like fibrils upon self-association, PLoS One, 10, e0132301, https://doi.org/10.1371/journal.pone.0132301.
  29. Khomenko, V. A., Portnyagina, O. Y., Novikova, O. D., Isaeva, M. P., Kim, N. Y., Likhatskaia, G. N., Vostrikova, O. P., and Solov’eva, T. F. (2008) Isolation and characterization of recombinant OmpF-like porin from the Yersinia pseudotuberculosis outer membrane, Russ. J. Bioorg. Chem., 34, 162-168, https://doi.org/10.1134/s1068162008020040.
  30. Novikova, O. D., Kim, N. Y., Luk’yanov, P. A., Likhatskaya, G. N., Emel’yanenko, V. I., and Solov’eva, T. F. (2007) Effects of pH on structural and functional properties of porin from the outer membrane of Yersinia pseudotuberculosis. II. Characterization of pH-induced conformational intermediates of yersinin, Biochemistry (Moscow) Suppl. Ser. A Membr. Cell Biol., 1, 154-162, https://doi.org/10.1134/S1990747807020080.
  31. Novikova, O. D., Chistyulin, D. K., Khomenko, V. A., Sidorin, E. V., Kim, N. Y., Sanina, N. M., Portnyagina, O. Y., Solov’eva, T. F., Uversky, V. N., and Shnyrov, V. L. (2017) Peculiarities of thermal denaturation of OmpF porin from Yersinia ruckeri, Mol. Bio. Syst., 13, 1854-1862, https://doi.org/10.1039/c7mb00239d.
  32. Oates, M. E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M. J., Xue, B., Dosztányi, S., Uversky, V. N., Obradovic, Z., Kurgan, L., Dunker, A. K., and Gough, J. (2012) D2P2: database of disordered protein predictions, Nucleic Acids Res., 41, D508-D516, https://doi.org/10.1093/nar/gks1226.
  33. Dass, R., Mulder, F. A., and Nielsen, J. T. (2020) ODiNPred: comprehensive prediction of protein order and disorder, Sci. Rep., 10, 1-16, https://doi.org/10.1038/s41598-020-71716-1.
  34. Novikova, O. D., Uversky, V. N., and Zelepuga, E. A. (2021) Non-specific porins of Gram-negative bacteria as proteins containing intrinsically disordered regions with amyloidogenic potential, Progr. Molec. Biol.Transl. Sci., 183, 75-99, https://doi.org/10.1016/bs.pmbts.2021.06.012.
  35. Новикова О. Д., Федореева Л. И., Хоменко В. А., Портнягина О. Ю., Ермак И. М., Лихацкая Г. Н., Мороз С. В., Соловьева Т. Ф., Оводов Ю. С. (1993) Влияние способа экстракции порообразующего белка из Yersinia pseudotuberculosis на его макромолекулярную организацию, Биоорган. химия, 19, 536-547.
  36. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
  37. Гааль О., Медьеши Г. А., Верецкеи Л. (1982) Электрофорез при разделении биологических макромолекул, Мир, Москва.
  38. Остерман Л. А. (1985) Хроматография белков и нуклеиновых кислот, Наука, Москва.
  39. Ким Н. Ю., Новикова О. Д., Хоменко В. А., Лихацкая Г. Н., Вострикова О. П., Емельяненко В. И., Кузнецова С. М., Соловьева Т. Ф. (2007). Влияние pH на структуру и функциональную активность порина из наружной мембраны Yersinia pseudotuberculosis. 1. Функционально значимые конформационные переходы иерсинина, Биол. мембраны, 24, 150-158.
  40. Sreerama, N., and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal. Biochem, 287, 252-260, https://doi.org/81910.1006/abio.2000.4880.
  41. Molecular Operating Environment (MOE), 2019.01; ChemicalComputingGroupULC, 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019, URL: https://www.chemcomp.com/Products.htm
  42. Likhatskaya, G. N., Solov’eva, T. F., Novikova, O. D., Issaeva, M. P., Gusev, K. V., Kryzhko, I. B., Trifonov, E. V., and Nurminski, E. A. (2005) Homology models of the Yersinia pseudotuberculosis and Yersinia pestis general porins and comparative analysis of their functional and antigenic regions, J. Biomol. Struct. Dyn., 23, 163-174, https://doi.org/10.1080/07391102.2005.1050705.
  43. Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., Darden, T. A., and Duke, R. E. (2014) AMBER 14, University of California, SanFrancisco.
  44. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926-935, https://doi.org/10.1063/1.445869.
  45. Obradovic, Z., Peng, K., Vucetic, S, Radivojac, P., and Dunker, A. K. (2005) Exploiting heterogeneouss sequence properties improves prediction of protein disorder, Proteins, 61, 176-182, https://doi.org/10.1002/prot.20735.
  46. Peng, K, Radivojac, P, Vucetic, S, Dunker, A. K., and Obradovic, Z. (2006) Length-dependent prediction of protein intrinsic disorder, BMC Bioinformatics, 7, 208, https://doi.org/10.1186/1471-2105-7-208.
  47. Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K., and Obradovic, Z. (2005) Optimizing long intrinsic disorder predictors with protein volutionary information, J. Bioinform. Comput. Biol., 3, 35-60, https:// doi.org/10.1142/s0219720005000886.
  48. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., and Dunker, A. K. (2001) Sequence complexity of disordered protein, Proteins, 42, 38-48, https://doi.org/10.1002/1097-0134(20010101) 42:1<38:aid-prot50>3.0.co;2-3.
  49. Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., and Uversky, V. N. (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids, Biochim. Biophys. Acta, 1804, 996-1010, https://doi.org/10.1016/ j.bbapap.2010.01.011.
  50. Mészáros, B., Erdős, G., and Dosztányi, Z. (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding, Nucleic Acids Res., 46 (W1), W329-W337, https://doi.org/10.1093/nar/gky384.
  51. Dayhoff, G. W., and Uversky, V. N. (2022) Rapid prediction and analysis of protein intrinsic disorder, Protein Sci., 31, e4496, https://doi.org/10.1002/pro.4496.
  52. Sidorova, O. V., Khomenko, V. A., Portnyagina, O. Y., Likhatskaya, G. N., Vakorina, T. I., Kim, N. Y., Chistyulin, D. K., Solov’eva, T. F., and Novikova, O. D. (2014) Mutant OmpF porins of Yersinia pseudotuberculosis with deletions of external loops: structure–functional and immunochemical properties, Biochem. Biophys. Res. Commun., 445, 428-432, https://doi.org/10.1016/j.bbrc.2014.02.018.
  53. Chehin, R., Iloro, I., Marcos, M. J., Villar, E., Shnyrov, V. L., and Arrondo, J. L. R. (1999) Thermal and pH-induced on formational changes of aβ-sheet protein monitored by infrared spectroscopy, Biochemistry, 38, 1525-1530, https://doi.org/10.1021/bi981567j.
  54. Kazlauskaite, J., Young, A., Gardner, C. E., Macpherson, J. V., Venien-Bryan, C., and Pinheiro, T. J. (2005) An unusual soluble beta-turn-rich conformation of prion is involved in fibril formation and toxic to neuronal cells, Biochem. Biophys. Res. Commun., 328, 292-305, https://doi.org/10.1016/j.bbrc.2004.12.172.
  55. Colon, W., and Kelly, J. W. (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro, Biochemistry, 31, 8654-8660, https://doi.org/10.1021/bi952501g.
  56. Chiti, F., and Dobson, C. M. (2009). Amyloid formation by globular proteins under native conditions, Nat. Chem. Biol., 5, 15-22, https://doi.org/10.1038/nchembio.131.
  57. Sikkink, L. A., and Ramirez-Alvarado, M. (2008) Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain, Biophys.Chem.,135, 25-31, https://doi.org/10.1016/j.bpc.2008.02.019.43.
  58. Сулацкая А. И., Кузнецова И. М. (2010) Взаимодействие тиофлавина Т с амилоидными фибриллами как инструмент для изучения их структуры, Цитология, 52, 955-959.
  59. Neudecker, P., Robustelli, P., Cavalli, A., Walsh, P., Lundström, P., Zarrine-Afsar, A., and Kay, L. E. (2012) Structure of an intermediate state in protein folding and aggregation, Science, 336, 362-366, https://doi.org/10.1126/science.1214203.
  60. Катина Н. С., Ильина Н. Б., Кашпаров И. А., Балобанов В. А., Васильев В. Д., Бычкова В. Е. (2011) Мутантные формы апомиоглобина с одиночными заменами в положении Val10 способны образовывать амилоидные структуры при пермиссивной температуре, Биохимия, 76, 680-691.
  61. Мельникова Н. М., Сулацкий М. И., Кузнецова И. М., Туроверов К. К., Сулацкая А. И. (2022) Структурный полиморфизм амилоидных фибрилл на основе лизоцима, Цитология, 64, 86-95.https://doi.org/10.31857/S0041377122010060.
  62. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C. M., and Stefani, M. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, 416, 507-511, https://doi.org/10.1038/416507a.
  63. Verma, M., Vats, A., and Taneja, V. (2015) Toxic species in amyloid disorders: oligomers or mature fibrils, Ann. Indian Acad. Neurol., 18, 138-145, https://doi.org/10.4103/0972-2327.144284.
  64. Sirangelo, I., Malmo, C., Iannuzzi, C., Mezzogiorno, A., Bianco, M. R., Papa, M., and Irace, G. (2004) Fibrillogenesis and cytotoxic activity of the amyloid-forming apomyoglobin mutant W7FW14F*, J. Biol. Chem., 279, 13183-13189, https://doi.org/10.1074/jbc.M308207200.
  65. Sahaya, R. J. J., Chinnappan, S. T, Singaravel, R., and Ignacimuthu, S. (2016) Outer membrane protein C (OmpC) of Escherichia coli induces neurodegeneration in mice by acting as an amyloid, Biotechnol. Lett., 38, 689-700, https://doi.org/10.1007/s10529-015-2025-8.
  66. An, T.T., Feng, S., and Zeng, C. M. (2017) Oxidized epigallocatechin gallate inhibited lysozyme fibrilation more strongly than the native form, Redox Biol., 11, 315-321, https://doi.org/10.1016/j.redox.2016.12.016.
  67. Schnaitman, C. A. (1973) Outer membrane proteins of Escherichia coli: II. Heterogeneity of major outer membrane polypeptides, Arch. Biochem. Biophys., 157, 553-560, https://doi.org/10.1016/0003-9861(73)90674-7.
  68. Гузев К. В., Исаева М. П., Новикова О. Д., Соловьева Т. Ф., Рассказов В. А. (2005) Молекулярная характеристика OmpF-подобных поринов патогенных Yersinia, Биохимия, 70, 1338-1345.
  69. Лакович Дж. (1986) Основы флуоресцентной спектроскопии, Мир, Москва.
  70. Burstein, E. A., Vedenkina, N. S., and Ivkova, M. N. (1973) Fluorescence and the location of tryptophan residues in protein molecules, Photochem. Photobiol., 18, 263-279, https://doi.org/10.1111/j.1751-1097.1973.tb06422.x.
  71. Hunter, R. J. (1981) Zeta Potential in Colloid Science: Principles and Applications, Academic Press, N.Y.
  72. Uversky, V. N. (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding, Protein J., 28, 305-325, https://doi.org/10.1007/s10930-009-9201-4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fluorescence spectra of thioflavin T complex with porins. a - YpOmpFt after incubation in phosphate-citrate buffer solution (pH 4.5) for 2 and 4 weeks at 42 °C. b - YpOmpFt after heating at 95 °C for 5 h in Tris-HCl-buffer (pH 7.4) and subsequent exposure at 25 °C for 10 days. c - Recombinant porins, full-length (RP) and mutant c deletion of outer loop 6 (RR_del6), samples were stored in phosphate-salt buffer solution (pH 7.4) in the presence of 0.01% Zw 3-14 at 4 °C for 6 months. d - YpOmpFt after incubation in phosphate-citrate buffer solution (pH 4.5) for 2 weeks at 42 °C, followed by heating at 95 °C for 5 h and subsequent exposure of the sample at 25 °C for 10 days. Fluorescence was excited at 412 nm. Data are presented as mean ± standard deviation from three experimental repeats

Download (187KB)
3. Fig. 2. Fluorescence microscopy of thioflavin-stained T aggregates. a - YpOmpFt after incubation in phosphate-citrate buffer solution (pH 4.5) for 4 weeks at 42 °C. b - YpOmpFt after heating at 95 °C for 5 h in Tris-HCl-buffer (pH 7.4) followed by holding the sample at 25 °C for 10 days. c - Recombinant mutant porin with deletion of outer loop 6 (RR_del6), the sample was stored in phosphate-salt buffer solution (pH 7.4) in the presence of 0.01% Zw 3-14 at 4 °C for 6 months. d - YpOmpFt after incubation in phosphate-citrate buffer solution (pH 4.5) for 2 weeks at 42 °C and heating at 95 °C for 5 h. e - YpOmpFt after incubation under the conditions indicated for panel (d) and subsequent incubation at 25 °C for 10 days. Images were obtained using an AXIO Imager microscope. A1 (Zeiss); objective was ECPlan-NEOFLUAR 40 × 0.75. Scale: 50 µm

Download (62KB)
4. Fig. 3. Cytotoxicity of YpOmpFt against mammalian cell culture (mouse neuroblastoma Neuro-2aCCL-131™ (‘ATCC’, USA)). Cytotoxic activity was expressed as the effective concentration (EC50) at which the metabolic activity of cells was inhibited by 50%. The proportion of dead cells was normalised in each case relative to the negative control (phosphate-salt buffer). Data are presented as mean ± standard deviation from three experimental repeats; the significance of differences between experimental and control groups was assessed using the Stjudent's t-criterion (* p ≤ 0.05)

Download (54KB)
5. Fig. 4. Physicochemical characterisation of different molecular forms of porin from Y. pseudotuberculosis. a - Electrophoregram of different molecular forms of porin from Y. pseudotuberculosis: 1 - YpOmpFm_10 kDa, denatured porin trimer, after treatment at pH 4.5 for 5 h at 95 °C followed by incubation at 25 °C for 10 days; 2 - YpOmpFm; 3 - YpOmpFt; 4 - marker proteins. b - Peptide maps of tryptic hydrolysis products of heat denatured monomer, YpOmpFm and polypeptide YpOmpFm_10 kDa. c - Determination of characteristic viscosity of different molecular forms of porin OmpF from Y. pseudotuberculosis. d - ER-MALDI spectra of YpOmpFt and polypeptide YpOmpFm_10 kDa

Download (169KB)
6. Fig. 5. Characterisation of the spatial structure of different molecular forms of OmpF porin of Y. pseudotuberculosis. a - CD spectra in the aromatic region. Protein intrinsic fluorescence spectra of YpOmpFt and YpOmpFm_10 kDa porin samples at 280 nm (b) and 296 nm (c) excitation

Download (114KB)
7. Fig. 6. Spatial structure model and analysis of the susceptibility of Y. pseudotuberculosis OmpF porin (IB serovar O-serotype, strain IP 31758; UniProtIDA0A0U1QUP9) to internal disorder. a - Results of the analysis of the amino acid sequence of YpOmpF porin obtained using bioinformatic tools. High values of the internal disorder probability (>0.5) on the graph correspond to regions of the amino acid sequence with intrinsically disordered structure, whereas values of the internal disorder probability from 0.15 to 0.5 are inherent to regions of the amino acid sequence with increased structural flexibility. The curves in different colours correspond to calculations made by different prediction programs: PONDR® VLS2 [45, 46], PONDR® VL3 [47], PONDR® VLXT [48], PONDR® FIT [49], IUPred-Long and IUPred-Short [50]. The web application Rapid Insorder Analysis Online (RIDAO) was used to summarize the results obtained with each prediction program [51]. b - The theoretical model of porin YpOmpF is presented as a ribbon diagram and coloured according to the predisposition of these structure sites to internal disorder: ordered sites are marked in brown and structurally plastic sites in blue.Trp residues are given in the spherical rod representation, and Tyr residues are given in the rod representation.The sequences of OmpF porins from Y. pseudotuberculosis strains 1b IP 31758, UniProtIDA0A0U1QUP9 and 1b 598 are identical

Download (221KB)

Copyright (c) 2024 Russian Academy of Sciences