pH-dependent redox properties of epigallocatechin gallate (EGCG) and its effect on respiration, photosynthesis and cell death in pea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The redox properties of the green tea component epigallocatechin gallate (EGCG) in vitro were studied and its effect on plant (pea) cells was tested. EGCG exhibited both pro- and antioxidant properties. In solutions, EGCG was oxidized by oxygen at physiological (slightly alkaline) pH values. Lowering the pH slowed down this process. Oxidation of EGCG was accompanied by the formation of O2-• and H2O2. In addition, EGCG functioned as an electron donor for peroxidase and, in combination with it, utilized H2O2. Exposure of EGCG to pea cells (leaf cuts or epidermis) suppressed respiration, reduced the transmembrane electric potential difference (Δψ) in mitochondria, and inhibited electron transfer in the photosynthetic electron transfer chain. Among the sites of the photosynthetic redox chain, Photosystem II was the least sensitive to the action of EGCG. EGCG reduced the rate of formation of reactive oxygen species in the epidermis, which was induced by NADH treatment and was registered using 2′,7′-dichlorofluorescine diacetate. In vivo, EGCG at concentrations from 10 µM to 1 mM suppressed KCN-induced death of guard cells in the epidermis, which was determined from the destruction of cell nuclei. EGCG at a concentration of 10 mM disrupted the barrier function of the guard cell plasma membrane, increasing its permeability to propidium iodide.

About the authors

D. B Kiselevsky

Lomonosov Moscow State University, Faculty of Biology

Email: dkiselevs@mail.ru
119234 Moscow, Russia

O. V Samuilova

Sechenov First Moscow State Medical University, Institute of Biodesign and Modeling of Complex Systems

Email: dkiselevs@mail.ru
119991 Moscow, Russia

V. D Samuilov

Lomonosov Moscow State University, Faculty of Biology

Email: dkiselevs@mail.ru
119234 Moscow, Russia

References

  1. Farhan, M. (2022) Green tea catechins: Nature's way of preventing and treating cancer, Int. J. Mol. Sci., 23, 10713, doi: 10.3390/ijms231810713.
  2. Imai, K., Suga, K., and Nakachi, K. (1997) Cancer-preventive effects of drinking green tea among a Japanese population, Prev. Med., 26, 769-775, doi: 10.1006/pmed.1997.0242.
  3. Singh, B. N., Shankar, S., and Srivastava, R. K. (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications, Biochem. Pharmacol., 82, 1807-1821, doi: 10.1016/j.bcp.2011.07.093.
  4. Gan, R. Y., Li, H. B., Sui, Z. Q., and Corke, H. (2018) Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review, Crit. Rev. Food Sci. Nutr., 58, 924-941, doi: 10.1080/10408398.2016.1231168.
  5. Hu, J., Zhou, D., and Chen, Y. (2009) Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG), J. Agric. Food Chem., 57, 1349-1353, doi: 10.1021/jf803143n.
  6. Nain, C. W., Mignolet, E., Herent, M. F., Quetin-Leclercq, J., Debier, C., Page, M. M., and Larondelle, Y. (2022) The catechins profile of green tea extracts affects the antioxidant activity and degradation of catechins in DHA-rich oil, Antioxidants, 11, 1844, doi: 10.3390/antiox11091844.
  7. Negri, A., Naponelli, V., Rizzi, F., and Bettuzzi, S. (2018) Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer, Nutrients, 10, 1936, doi: 10.3390/nu10121936.
  8. Zhao, J., Blayney, A., Liu, X., Gandy, L., Jin, W., Yan, L., Ha, J.-H., Canning, A.J., Connelly, M., Yang, C., Liu, X., Xiao, Y., Cosgrove, M. S., Solmaz, S. R., Zhang, Y., Ban, D., Chen, J., Loh, S. N., and Wang, C. (2021) EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction, Nat. Commun., 12, 986, doi: 10.1038/s41467-021-21258-5.
  9. Steinmann, J., Buer, J., Pietschmann, T., and Steinmann, E. (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea, Br. J. Pharmacol., 168, 1059-1073, doi: 10.1111/bph.12009.
  10. Tsvetkov, V., Varizhuk, A., Kozlovskaya, L., Shtro, A., Lebedeva, O., Komissarov, A., Vedekhina, T., Manuvera, V., Zubkova, O., Eremeev, A., Shustova, E., Pozmogova, G., Lioznov, D., Ishmukhametov, A., Lazarev, V., and Lagarkova, M. (2021) EGCG as an anti-SARS-CoV-2 agent: Preventive versus therapeutic potential against original and mutant virus, Biochimie, 191, 27-32, doi: 10.1016/j.biochi.2021.08.003.
  11. Taylor, L. P., and Grotewold, E. (2005) Flavonoids as developmental regulators, Curr. Opin. Plant Biol., 8, 317-323, doi: 10.1016/j.pbi.2005.03.005.
  12. Treutter, D. (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant Biol. (Stuttg), 7, 581-591, doi: 10.1055/s-2005-873009.
  13. Hong, G., Wang, J., Hochstetter, D., Gao, Y., Xu, P., and Wang, Y. (2015) Epigallocatechin-3-gallate functions as a physiological regulator by modulating the jasmonic acid pathway, Physiol. Plant., 153, 432-439, doi: 10.1111/ppl.12256.
  14. Wei, Y., Chen, P., Ling, T., Wang, Y., Dong, R., Zhang, C., Zhang, L., Han, M., Wang, D., Wan, X., and Zhang, J. (2016) Certain (-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG, Food Chem., 204, 218-226, doi: 10.1016/j.foodchem.2016.02.134.
  15. Gomes, A., Fernandes, E., and Lima, J. L. F. C. (2005) Fluorescence probes used for detection of reactive oxygen species, J. Biochem. Biophys. Methods, 65, 45-80, doi: 10.1016/j.jbbm.2005.10.003.
  16. Rhee, S. G., Chang, T. S., Jeong, W., and Kang, D. (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells, Mol. Cells, 29, 539-549, doi: 10.1007/s10059-010-0082-3.
  17. LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Evaluation of the probe 2′,7′-dichiorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5, 227-231, doi: 10.1021/tx00026a012.
  18. Karlsson, M., Kurz, T., Brunk, U. T., Nilsson, S. E., and Frennesson, C. I. (2010) What does the commonly used DCF test for oxidative stress really show? Biochem. J., 428, 183-190, doi: 10.1042/BJ20100208.
  19. Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Y. V., and Gusev, M. V. (2003) Participation of chloroplasts in plant apoptosis, Biosci. Rep., 23, 103-117, doi: 10.1023/a:1025576307912.
  20. Darzynkiewicz, Z., Bruno, S., Del Bino, G., Gorczyca, W., Hotz, M. A., Lassota, P., and Traganos, F. (1992) Features of apoptotic cells measured by flow cytometry, Cytometry, 13, 795-808, doi: 10.1002/cyto.990130802.
  21. Yamazaki, I., and Yokota, K. (1973) Oxidation states of peroxidase, Mol. Cell. Biochem., 2, 39-52, doi: 10.1007/BF01738677.
  22. Yokota, K., and Yamazaki, I. (1977) Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase, Biochemistry, 16, 1913-1920, doi: 10.1021/bi00628a024.
  23. Votyakova, T. V., and Reynolds, I. J. (2004) Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation, Arch. Biochem. Biophys., 431, 138-144, doi: 10.1016/j.abb.2004.07.025.
  24. Kiselevsky, D. B., Il'ina, A. V., Lunkov, A. P., Varlamov, V. P., Samuilov, V. D. (2022) Investigation of the antioxidant properties of the quaternized chitosan modified with a gallic acid residue using peroxidase, Biochemistry (Moscow), 87, 141-149, doi: 10.1134/S0006297922020067.
  25. Porcelli, A. M., Ghelli, A., Zanna, C., Pinton, P., Rizzuto, R., and Rugolo, M. (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant, Biochem. Biophys. Res. Commun., 326, 799-804, doi: 10.1016/j.bbrc.2004.11.105.
  26. Weng, Z., Zhou, P., Salminen, W. F., Yang, X., Harrill, A. H., Cao, Z., Mattes, W. B., Mendrick, D. L., and Shi, Q. (2014) Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria, Biochem. Biophys. Res. Commun., 443, 1097-1104, doi: 10.1016/j.bbrc.2013.12.110.
  27. Pan, H., Chen, J., Shen, K., Wang, X., Wang, P., Fu, G., Meng, H., Wang, Y., and Jin, B. (2015) Mitochondrial modulation by epigallocatechin 3-gallate ameliorates cisplatin induced renal injury through decreasing oxidative/nitrative stress, inflammation and NF-kB in mice, PLoS One, 10, e0124775, doi: 10.1371/journal.pone.0124775.
  28. Castellano-González, G., Pichaud, N., Ballard, J. W., Bessede, A., Marcal, H., and Guillemin, G. J. (2016) Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes, Oncotarget, 7, 7426-7440, doi: 10.18632/oncotarget.6863.
  29. Pal, S., Porwal, K., Rajak, S., Sinha, R. A., and Chattopadhyay, N. (2020) Selective dietary polyphenols induce differentiation of human osteoblasts by adiponectin receptor 1-mediated reprogramming of mitochondrial energy metabolism, Biomed. Pharmacother., 127, 110207, doi: 10.1016/j.biopha.2020.110207.
  30. Li, X., Tang, S., Wang, Q.-Q., Leung, E. L.-H., Jin, H., Huang, Y., Liu, J., Geng, M., Huang, M., Yuan, S., Yao, X.-J., and Ding, J. (2017) Identification of epigallocatechin-3-gallate as an inhibitor of phosphoglycerate mutase 1, Front. Pharmacol., 8, 325, doi: 10.3389/fphar.2017.00325.
  31. Weber, A. A., Neuhaus, T., Skach, R. A., Hescheler, J., Ahn, H. Y., Schrör, K., Ko, Y., and Sachinidis, A. (2004) Mechanisms of the inhibitory effects of epigallocatechin-3 gallate on platelet-derived growth factor-BB-induced cell signaling and mitogenesis, FASEB J., 18, 128-130, doi: 10.1096/fj.03-0007fje.
  32. Kucera, O., Mezera, V., Moravcova, A., Endlicher, R., Lotkova, H., Drahota, Z., and Cervinkova, Z. (2015) In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes, Oxid. Med. Cell. Longev., 2015, 476180, doi: 10.1155/2015/476180.
  33. Stevens, J. F., Revel, J. S., and Maier, C. S. (2018) Mitochondria-centric review of polyphenol bioactivity in cancer models, Antioxid. Redox Signal., 29, 1589-1611, doi: 10.1089/ars.2017.7404.
  34. Schansker, G., and van Rensen, J. J. (1993) Characterization of the complex interaction between the electron acceptor silicomolybdate and Photosystem II, Photosynth. Res., 37, 165-175, doi: 10.1007/BF02187475.
  35. Petrova, A., Mamedov, M., Ivanov, B., Semenov, A., and Kozuleva, M. (2018) Effect of artificial redox mediators on the photoinduced oxygen reduction by photosystem I complexes, Photosynth. Res., 137, 421-429, doi: 10.1007/s11120-018-0514-z.
  36. Calzadilla, P. I., Zhan, J., Sétif, P., Lemaire, C., Solymosi, D., Battchikova, N., Wang, Q., and Kirilovsky, D. (2019) The cytochrome b6f complex is not involved in cyanobacterial state transitions, Plant Cell, 31, 911-931, doi: 10.1105/tpc.18.00916.
  37. Lu, Y., Wang, J., Yu, Y., Shi, L., and Kong, F. (2014) Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress, Chemosphere, 117, 164-169, doi: 10.1016/j.chemosphere.2014.06.040.
  38. Baranowska, M., Suliborska, K., Chrzanowski, W., Kusznierewicz, B., Namieśnik, J., and Bartoszek, A. (2018) The relationship between standard reduction potentials of catechins and biological activities involved in redox control, Redox Biol., 17, 355-366, doi: 10.1016/j.redox.2018.05.005.
  39. Saif Hasan, S., Yamashita, E., and Cramer, W. A. (2013) Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex, Biochim. Biophys. Acta, 1827, 1295-1308, doi: 10.1016/j.bbabio.2013.03.002.
  40. Киселевский Д. Б., Самуилов В. Д. (2019) Проницаемость плазматической мембраны для йодида пропидия и разрушение ядер клеток в эпидермисе листьев гороха: действие полиэлектролитов и детергентов, Вестник Московского университета. Серия 16. Биология, 74, 188-194, doi: 10.3103/S0096392519030052.
  41. Trinh, M. D. L., and Masuda, S. (2022) Chloroplast pH homeostasis for the regulation of photosynthesis, Front. Plant Sci., 13, 919896, doi: 10.3389/fpls.2022.919896.
  42. Kunimoto, M., Inoue, K., and Nojima, S. (1981) Effect of ferrous ion and ascorbate-induced lipid peroxidation on liposomal membranes, Biochim. Biophys. Acta, 646, 169-178, doi: 10.1016/0005-2736(81)90284-4.
  43. Folmer, V., Pedroso, N., Matias, A. C., Lopes, S. C., Antunes, F., Cyrne, L., and Marinho, H. S. (2008) H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1778, 1141-1147, doi: 10.1016/j.bbamem.2007.12.008.
  44. Garrido-Bazán, V., and Aguirre, J. (2022) H2O2 induces calcium and ERMES complex-dependent mitochondrial constriction and division as well as mitochondrial outer membrane remodeling in Aspergillus nidulans, J. Fungi, 8, 829, doi: 10.3390/jof8080829.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences