Myelin olygodendrocyte glycoprotein - autoantigen in inflammatory demyelinating diseases of the central nervous system
- Authors: Eliseeva D.D1, Zakharova M.N1
-
Affiliations:
- Research Center of Neurology
- Issue: Vol 88, No 4 (2023)
- Pages: 671-687
- Section: Articles
- URL: https://rjeid.com/0320-9725/article/view/665367
- DOI: https://doi.org/10.31857/S0320972523040103
- EDN: https://elibrary.ru/ALMOWX
- ID: 665367
Cite item
Abstract
Demyelinating diseases of the CNS are a result of an autoimmune attack to the myelin sheaths surrounding axons. Their structural proteins become antigenic and as a result, myelin lesions appear. The identification of specific antibodies directed against the components of myelin, using highly specialized methods of laboratory diagnostics, can significantly improve diagnostic approaches. Currently, myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) consists of demyelinating syndromes with an identified antigen. The pathogenic role of human MOG-IgG has been demonstrated, which makes it possible to isolate this disease into a separate nosological form. However, for the myelin oligodendrocyte glycoprotein (MOG) gene, alternative splicing can produce various isoforms, which hinders antigen detection even for the most advanced techniques of immunofluorescence analysis. On the other hand, MOG conformational changes provide the structural integrity of other myelin proteins and maintain immune autotolerance mechanisms that are unique to humans.
About the authors
D. D Eliseeva
Research Center of Neurology
Email: ddeliseeva@gmail.com
125367 Moscow, Russia
M. N Zakharova
Research Center of Neurology
Email: ddeliseeva@gmail.com
125367 Moscow, Russia
References
- Emery, B. (2010) Regulation of oligodendrocyte differentiation and myelination, Science, 330, 779-782, doi: 10.1126/science.1190927.
- Saikali, P., Cayrol, R., and Vincent, T. (2009) Anti-aquaporin-4 auto-antibodies orchestrate the pathogenesis in neuromyelitis optica, Autoimmun. Rev., 9, 132-135, doi: 10.1016/j.autrev.2009.04.004.
- Graus, F., Titulaer, M. J., Balu, R., Benseler, S., Bien, C. G., Cellucci, T., Cortese, I., Dale, R. C., Gelfand, J. M., Geschwind, M., Glaser, C. A., Honnorat, J., H�ftberger, R., Iizuka, T., Irani, S. R., Lancaster, E., Leypoldt, F., Pr�ss, H., Rae-Grant, A., Reindl, M., Rosenfeld, M. R., Rost�sy, K., Saiz, A., Venkatesan, A., Vincent, A., Wandinger, K. P., Waters, P., and Dalmau, J. (2016) A clinical approach to diagnosis of autoimmune encephalitis, Lancet Neurol., 15, 391-404, doi: 10.1016/S1474-4422(15)00401-9.
- Yamout, B. I., and Alroughani, R. (2018) Multiple sclerosis, Semin. Neurol., 38, 212-225, doi: 10.1055/s-0038-1649502.
- Giovannoni, G., Popescu, V., Wuerfel, J., Hellwig, K., Iacobaeus, E., Jensen, M. B., Garc�a-Dom�nguez, J. M., Sousa, L., De Rossi, N., Hupperts, R., Fenu, G., Bodini, B., Kuusisto, H. M., Stankoff, B., Lycke, J., Airas, L., Granziera, C., and Scalfari, A. (2022) Smouldering multiple sclerosis: the "real MS", Ther. Adv. Neurol. Disord., 25, 17562864211066751, doi: 10.1177/17562864211066751.
- McGinley, M. P., Goldschmidt, C. H., and Rae-Grant, A. D. (2021) Diagnosis and treatment of multiple sclerosis: a review, JAMA, 23, 765-779, doi: 10.1001/jama.2020.26858.
- Lennon, V. A., Wingerchuk, D. M., Kryzer, T. J., Pittock, S. J., Lucchinetti, C. F., Fujihara, K., Nakashima, I., and Weinshenker, B. G. (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis, Lancet, 364, 2106-2112, doi: 10.1016/S0140-6736(04)17551-X.
- Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S., and Hinson, S. R. (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel, J. Exp. Med., 202, 473-477, doi: 10.1084/jem.20050304.
- Wingerchuk, D. M., Banwell, B., Bennett, J. L., Cabre, P., Carroll, W., Chitnis, T., de Seze, J., Fujihara, K., Greenberg, B., Jacob, A., et al. (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders, Neurology, 85, 177-189, doi: 10.1212/WNL.0000000000001729.
- Jarius, S., and Wildemann, B. (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance, Nat. Rev. Neurol., 6, 383-392, doi: 10.1038/nrneurol.2010.72.
- Jarius, S., Metz, I., Konig, F. B., Ruprecht, K., Reindl, M., Paul, F., Bruck, W., and Wildemann, B. (2016) Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in "pattern II multiple sclerosis" and brain biopsy findings in a MOG-IgG-positive case, Multiple Sclerosis, 22, 1541-1549, doi: 10.1177/1352458515622986.
- Misu, T., H�ftberger, R., Fujihara, K., Wimmer, I., Takai, Y., Nishiyama, S., Nakashima, I., Konno, H., Bradl, M., Garzuly, F., Itoyama, Y., Aoki, M., and Lassmann, H. (2013) Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica, Acta Neuropathol., 125, 815-827, doi: 10.1007/s00401-013-1116-7.
- Kaneko, K., Sato, D. K., Nakashima, I., Nishiyama, S., Tanaka, S., Marignier, R., Hyun, J. W., Oliveira, L. M., Reindl, M., Seifert-Held, T., Sepulveda, M., Siritho, S., Waters, P. J., Kurosawa, K., Akaishi, T., Kuroda, H., Misu, T., Prayoonwiwat, N., Berger, T., Saiz, A., and Aoki, M. (2016) Myelin injury without astrocytopathy in neuroinflammatory disorders with MOG antibodies, J. Neurol. Neurosurg. Psychiatry, 87, 1257-1259, doi: 10.1136/jnnp-2015-312676.
- Takai, Y., Misu, T., Kaneko, K., Chihara, N., Narikawa, K., Tsuchida, S., Nishida, H., Komori, T., Seki, M., Komatsu, T., Nakamagoe, K., Ikeda, T., Yoshida, M., Takahashi, T., Ono, H., Nishiyama, S., Kuroda, H., Nakashima, I., Suzuki, H., Bradl, M., et al. (2020) Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study, Brain, 143, 1431-1446, doi: 10.1093/brain/awaa102.
- Jarius, S., Paul, F., Aktas, O., Asgari, N., Dale, R. C., de Seze, J., Franciotta, D., Fujihara, K., Jacob, A., Kim, H. J., Kleiter, I., K�mpfel, T., Levy, M., Palace, J., Ruprecht, K., Saiz, A., Trebst, C., Weinshenker, B. G., and Wildemann, B. (2018) MOG encephalomyelitis: international recommendations on diagnosis and antibody testing, J. Neuroinflamm., 15, 134, doi: 10.1186/s12974-018-1144-2.
- Banwell, B., Bennett, J. L., Marignier, R., Kim, H. J., Brilot, F., Flanagan, E. P., Ramanathan, S., Waters, P., Tenembaum, S., Graves, J. S., Chitnis, T., Brandt, A. U., Hemingway, C., Neuteboom, R., Pandit, L., Reindl, M., Saiz, A., Sato, D. K., Rostasy, K., Paul, F., and Palace, J. (2023) Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria, Lancet Neurol., 22, 268-282, doi: 10.1016/S1474-4422(22)00431-8.
- Baumann, N., and Pham-Dinh, D. (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system, Physiol. Rev., 81, 871-927, doi: 10.1152/physrev.2001.81.2.871.
- Quarles, R. H. (2002) Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration, Cell. Mol. Life Sci., 59, 1851-1871, doi: 10.1007/pl00012510.
- Lebar, R., Boutry, J. M., Vincent, C., Robineaux, R., and Voisin, G. A. (1976) Studies on autoimmune encephalomyelitis in the guinea pig. II. An in vitro investigation on the nature, properties, and specificity of the serum-demyelinating factor, J. Immunol., 116, 1439-1446.
- Von B�dingen, H. C., Hauser, S. L., Fuhrmann, A., Nabavi, C. B., Lee, J. I., and Genain, C. P. (2002) Molecular characterization of antibody specificities against myelin/oligodendrocyte glycoprotein in autoimmune demyelination, Proc. Natl. Acad. Sci. USA, 99, 8207-8212, doi: 10.1073/pnas.122092499.
- Campagnoni, A. T., and Skoff, R. P. (2001) The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes, Brain Pathol., 11, 74-91, doi: 10.1111/j.1750-3639.2001.tb00383.x.
- Slavin, A. J., Johns, T. G., Orian, J. M., and Bernard, C. C. (1997) Regulation of myelin oligodendrocyte glycoprotein in different species throughout development, Dev. Neurosci., 19, 69-78, doi: 10.1159/000111187.
- Kroepfl, J. F., Viise, L. R., Charron, A. J., Linington, C., and Gardinier, M. V. (1996) Investigation of myelin/oligodendrocyte glycoprotein membrane topology, J. Neurochem., 67, 2219-2222, doi: 10.1046/j.1471-4159.1996.67052219.x.
- Bettadapura, J., Menon, K. K., Moritz, S., Liu, J., and Bernard, C. C. (1998) Expression, purification, and encephalitogenicity of recombinant human myelin oligodendrocyte glycoprotein, J. Neurochem., 70, 1593-1599, doi: 10.1046/j.1471-4159.1998.70041593.x.
- Koukoulitsa, C., Chontzopoulou, E., Kiriakidi, S., Tzakos, A. G., and Mavromoustakos, T. (2020) A journey to the conformational analysis of T-cell epitope peptides involved in multiple sclerosis, Brain Sci., 10, 356, doi: 10.3390/brainsci10060356.
- Breithaupt, C., Sch�fer, B., Pellkofer, H., Huber, R., Linington, C., and Jacob, U. (2008) Demyelinating myelin oligodendrocyte glycoprotein-specific autoantibody response is focused on one dominant conformational epitope region in rodents, J. Immunol., 181, 1255-1263, doi: 10.4049/jimmunol.181.2.1255.
- Bittner, S., Afzali, A. M., Wiendl, H., and Meuth, S. G. (2014) Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice, J. Vis. Exp., 86, 51275, doi: 10.3791/51275.
- Peschl, P., Schanda, K., Zeka, B., Given, K., B�hm, D., Ruprecht, K., Saiz, A., Lutterotti, A., Rost�sy, K., H�ftberger, R., Berger, T., Macklin, W., Lassmann, H., Bradl, M., Bennett, J. L., and Reindl, M. (2017) Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination, J. Neuroinflamm., 14, 208, doi: 10.1186/s12974-017-0984-5.
- Mayer, M. C., Breithaupt, C., Reindl, M., Schanda, K., Rost�sy, K., Berger, T., Dale, R. C., Brilot, F., Olsson, T., Jenne, D., Pr�bstel, A. K., Dornmair, K., Wekerle, H., Hohlfeld, R., Banwell, B., Bar-Or, A., and Meinl, E. (2013) Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases, J. Immunol., 191, 3594-3604, doi: 10.4049/jimmunol.1301296.
- Mayer, M. C., and Meinl, E. (2012) Glycoproteins as targets of autoantibodies in CNS inflammation: MOG and more, Ther. Adv. Neurol. Disord., 5, 147-159, doi: 10.1177/1756285611433772.
- Ramya, L. (2020) Role of N-glycan in the structural changes of myelin oligodendrocyte glycoprotein and its complex with an antibody, J. Biomol. Struct. Dynamics, 38, 1649-1658, doi: 10.1080/07391102.2019.1614999.
- Marti Fernandez, I., Macrini, C., Krumbholz, M., Hensbergen, P. J., Hipgrave Ederveen, A. L., Winklmeier, S., Vural, A., Kurne, A., Jenne, D., Kamp, F., Gerdes, L. A., Hohlfeld, R., Wuhrer, M., K�mpfel, T., and Meinl, E. (2019) The glycosylation site of myelin oligodendrocyte glycoprotein affects autoantibody recognition in a large proportion of patients, Front. Immunol., 10, 1189, doi: 10.3389/fimmu.2019.01189.
- Ambrosius, W., Michalak, S., Kozubski, W., and Kalinowska, A. (2020) Myelin oligodendrocyte glycoprotein antibody-associated disease: current insights into the disease pathophysiology, diagnosis and management, Int. J. Mol. Sci., 22, 100, doi: 10.3390/ijms22010100.
- Barkovich, A. J. (2000) Concepts of myelin and myelination in neuroradiology, Am. J. Neuroradiol., 21, 1099-1109.
- Dale, R. C., Tantsis, E. M., Merheb, V., Kumaran, R. Y., Sinmaz, N., Pathmanandavel, K., Ramanathan, S., Booth, D. R., Wienholt, L. A., Prelog, K., Clark, D. R., Guillemin, G. J., Lim, C. K., Mathey, E. K., and Brilot, F. (2014) Antibodies to MOG have a demyelination phenotype and affect oligodendrocyte cytoskeleton, Neurol. Neuroimmunol. Neuroinflamm., 1, e12, doi: 10.1212/NXI.0000000000000012.
- Johns, T. G., and Bernard, C. C. (1999) The structure and function of myelin oligodendrocyte glycoprotein, J. Neurochem., 72, 1-9, doi: 10.1046/j.1471-4159.1999.0720001.x.
- Morise, J., Takematsu, H., and Oka, S. (2017) The role of human natural killer-1 (HNK-1) carbohydrate in neuronal plasticity and disease, Biochim. Biophys. Acta, 1861, 2455-2461, doi: 10.1016/j.bbagen.2017.06.025.
- Pham-Dinh, D., Mattei, M. G., Nussbaum, J. L., Roussel, G., Pontarotti, P., Roeckel, N., Mather, I. H., Artzt, K., Lindahl, K. F., and Dautigny, A. (1993) Myelin/oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex, Proc. Natl. Acad. Sci. USA, 90, 7990-7994, doi: 10.1073/pnas.90.17.7990.
- Delarasse, C., Della Gaspera, B., Lu, C. W., Lachapelle, F., Gelot, A., Rodriguez, D., Dautigny, A., Genain, C., and Pham-Dinh, D. (2006) Complex alternative splicing of the myelin oligodendrocyte glycoprotein gene is unique to human and non-human primates, J. Neurochem., 98, 1707-1717, doi: 10.1111/j.1471-4159.2006.04053.
- Spadaro, M., Winklmeier, S., Beltr�n, E., Macrini, C., H�ftberger, R., Schuh, E., Thaler, F. S., Gerdes, L. A., Laurent, S., Gerhards, R., Br�ndle, S., Dornmair, K., Breithaupt, C., Krumbholz, M., Moser, M., Krishnamoorthy, G., Kamp, F., Jenne, D., Hohlfeld, R., K�mpfel, T., and Meinl, E. (2018) Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein, Ann. Neurol., 84, 315-328, doi: 10.1002/ana.25291.
- Reindl, M., and Waters, P. (2019) Myelin oligodendrocyte glycoprotein antibodies in neurological disease, Nat. Rev. Neurol., 15, 89-102, doi: 10.1038/s41582-018-0112-x.
- Kwon, Y. N., Kim, B., Kim, J. S., Mo, H., Choi, K., Oh, S. I., Kim, J. E., Nam, T. S., Sohn, E. H., Heo, S. H., Kim, S. B., Park, K. C., Yoon, S. S., Oh, J., Baek, S. H., Kim, B. J., Park, K. S., Sung, J. J., Jung, J. H., Kim, S. J., and Kim, S. M. (2021) Myelin oligodendrocyte glycoprotein-immunoglobulin G in the CSF: clinical implication of testing and association with disability, Neurol. Neuroimmunol. Neuroinflamm., 9, e1095, doi: 10.1212/NXI.0000000000001095.
- Pujol, J., Soriano-Mas, C., Ortiz, H., Sebasti�n-Gall�s, N., Losilla, J. M., and Deus, J. (2006) Myelination of language-related areas in the developing brain, Neurology, 66, 339-343, doi: 10.1212/1.wnl.0000201049.66073.8d.
- Mathisen, P. M., Kawczak, J. A., Yu, M., Johnson, J. M., and Tuohy, V. K. (2001) Differential DM20 mRNA expression distinguishes two distinct patterns of spontaneous recovery from murine autoimmune encephalomyelitis, J. Neurosci. Res., 64, 542-551, doi: 10.1002/jnr.1106.
- Allamargot, C., and Gardinier, M. V. (2007) Alternative isoforms of myelin/oligodendrocyte glycoprotein with variable cytoplasmic domains are expressed in human brain, J. Neurochem., 101, 298-312, doi: 10.1111/j.1471-4159.2006.04296.x.
- Schanda, K., Peschl, P., Lerch, M., Seebacher, B., Mindorf, S., Ritter, N., Probst, M., Hegen, H., Di Pauli, F., Wendel, E. M., Lechner, C., Baumann, M., Mariotto, S., Ferrari, S., Saiz, A., Farrell, M., Leite, M., Irani, S. R., Palace, J., Lutterotti, A., and Reindl, M. (2021) Differential binding of autoantibodies to MOG isoforms in inflammatory demyelinating diseases, Neurol. Neuroimmunol. Neuroinflamm., 8, e1027, doi: 10.1212/NXI.0000000000001027.
- Eichinger, A., Neumaier, I., and Skerra, A. (2021) The extracellular region of bovine milk butyrophilin exhibits closer structural similarity to human myelin oligodendrocyte glycoprotein than to immunological BTN family receptors, Biol. Chem., 402, 1187-1202, doi: 10.1515/hsz-2021-0122.
- Jurynczyk, M., Messina, S., Woodhall, M. R., Raza, N., Everett, R., Roca-Fernandez, A., Tackley, G., Hamid, S., Sheard, A., Reynolds, G., Chandratre, S., Hemingway, C., Jacob, A., Vincent, A., Leite, M. I., Waters, P., and Palace, J. (2017) Clinical presentation and prognosis in MOG-antibody disease: a UK study, Brain, 140, 3128-3138, doi: 10.1093/brain/awx276.
- Marignier, R., Hacohen, Y., Cobo-Calvo, A., Pr�bstel, A. K., Aktas, O., Alexopoulos, H., Amato, M. P., Asgari, N., Banwell, B., Bennett, J., Brilot, F., Capobianco, M., Chitnis, T., Ciccarelli, O., Deiva, K., De S�ze, J., Fujihara, K., Jacob, A., Kim, H. J., Kleiter, I., et al. (2021) Myelin-oligodendrocyte glycoprotein antibody-associated disease, Lancet Neurol., 20, 762-772, doi: 10.1016/S1474-4422(21)00218-0.
- Bournazos, S., Wang, T. T., Dahan, R., Maamary, J., and Ravetch, J. V. (2017) Signaling by antibodies: recent progress, Ann. Rev. Immunol., 35, 285-311, doi: 10.1146/annurev-immunol-051116-052433.
- Wang, T. T., and Ravetch, J. V. (2019) Functional diversification of IgGs through Fc glycosylation, J. Clin. Invest., 129, 3492-3498, doi: 10.1172/JCI130029.
- Spatola, M., Chuquisana, O., Jung, W., Lopez, J. A., Wendel, E. M., Ramanathan, S., Keller, C. W., Hahn, T., Meinl, E., Reindl, M., Dale, R. C., Wiendl, H., Lauffenburger, D. A., Rost�sy, K., Brilot, F., Alter, G., and L�nemann, J. D. (2023) Humoral signatures of MOG-antibody-associated disease track with age and disease activity, Cell Rep. Med., 4, 100913, doi: 10.1016/j.xcrm.2022.100913.
- Shields, R. L., Lai, J., Keck, R., O'Connell, L. Y., Hong, K., Meng, Y. G., Weikert, S. H., and Presta, L. G. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity, J. Biol. Chem., 277, 26733-26740, doi: 10.1074/jbc.M202069200.
- Gudelj, I., Lauc, G., and Pezer, M. (2018) Immunoglobulin G glycosylation in aging and diseases, Cell. Immunol., 333, 65-79, doi: 10.1016/j.cellimm.2018.07.009.
- Mony, J. T., Khorooshi, R., and Owens, T. (2014) MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE, Multiple Sclerosis, 20, 1312-1321, doi: 10.1177/1352458514524086.
- Oliveira, L. M., Ap�stolos-Pereira, S. L., Pitombeira, M. S., Bruel Torretta, P. H., Callegaro, D., and Sato, D. K. (2019) Persistent MOG-IgG positivity is a predictor of recurrence in MOG-IgG-associated optic neuritis, encephalitis and myelitis, Multiple Sclerosis, 25, 1907-1914, doi: 10.1177/1352458518811597.
- Quast, I., Keller, C. W., Maurer, M. A., Giddens, J. P., Tackenberg, B., Wang, L. X., M�nz, C., Nimmerjahn, F., Dalakas, M. C., and L�nemann, J. D. (2015) Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity, J. Clin. Invest., 125, 4160-4170, doi: 10.1172/JCI82695.
- Seeling, M., Br�ckner, C., and Nimmerjahn, F. (2017) Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat. Rev. Rheumatol., 13, 621-630, doi: 10.1038/nrrheum.2017.146.
- Reindl, M., Schanda, K., Woodhall, M., Tea, F., Ramanathan, S., Sagen, J., Fryer, J. P., Mills, J., Teegen, B., Mindorf, S., Ritter, N., Krummrei, U., St�cker, W., Eggert, J., Flanagan, E. P., Ramberger, M., Hegen, H., Rostasy, K., Berger, T., Leite, M. I., and Waters, P. (2020) International multicenter examination of MOG antibody assays, Neurol. Neuroimmunol. Neuroinflamm., 7, e674, doi: 10.1212/NXI.0000000000000674.
- Kaneko, K., Sato, D. K., Nakashima, I., Ogawa, R., Akaishi, T., Takai, Y., Nishiyama, S., Takahashi, T., Misu, T., Kuroda, H., Tanaka, S., Nomura, K., Hashimoto, Y., Callegaro, D., Steinman, L., Fujihara, K., and Aoki, M. (2018) CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications, J. Neurol. Neurosurg. Psychiatry, 89, 927-936, doi: 10.1136/jnnp-2018-317969.
- Fujihara, K., Bennett, J. L., de Seze, J., Haramura, M., Kleiter, I., Weinshenker, B. G., Kang, D., Mughal, T., and Yamamura, T. (2020) Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology, Neurol. Neuroimmunol. Neuroinflamm., 7, e841, doi: 10.1212/NXI.0000000000000841.
- Traboulsee, A., Greenberg, B. M., Bennett, J. L., Szczechowski, L., Fox, E., Shkrobot, S., Yamamura, T., Terada, Y., Kawata, Y., Wright, P., Gianella-Borradori, A., Garren, H., and Weinshenker, B. G. (2020) Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial, Lancet Neurol., 19, 402-412, doi: 10.1016/S1474-4422(20)30078-8.
- Khalil, M., Teunissen, C. E., Otto, M., Piehl, F., Sormani, M. P., Gattringer, T., Barro, C., Kappos, L., Comabella, M., Fazekas, F., Petzold, A., Blennow, K., Zetterberg, H., and Kuhle, J. (2018) Neurofilaments as biomarkers in neurological disorders, Nat. Rev. Neurol., 14, 577-589, doi: 10.1038/s41582-018-0058-z.
- Bozzetti, S., Ferrari, S., Gajofatto, A., and Mariotto, S. (2021) Neurofilament light chain in demyelinating conditions of the central nervous system: a promising biomarker, Neuroimmunol. Neuroinflamm., 8, 1-13, doi: 10.20517/2347-8659.2020.26.
- Watanabe, M., Nakamura, Y., Michalak, Z., Isobe, N., Barro, C., Leppert, D., Matsushita, T., Hayashi, F., Yamasaki, R., Kuhle, J., and Kira, J. I. (2019) Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD, Neurology, 93, e1299-e1311, doi: 10.1212/WNL.0000000000008160.
- Mariotto, S., Gastaldi, M., Grazian, L., Mancinelli, C., Capra, R., Marignier, R., Alberti, D., Zanzoni, S., Schanda, K., Franciotta, D., Calabria, F., Monaco, S., Reindl, M., Ferrari, S., and Gajofatto, A. (2021) NfL levels predominantly increase at disease onset in MOG-Abs-associated disorders, Multiple Scleros. Related Disord., 50, 102833, doi: 10.1016/j.msard.2021.102833.
- Franklin, R. J., and Goldman, S. A. (2015) Glia disease and repair-remyelination, Cold Spring Harb. Perspect. Biol., 7, a020594, doi: 10.1101/cshperspect.a020594.
- Mitew, S., Hay, C. M., Peckham, H., Xiao, J., Koenning, M., Emery, B. (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin, Neuroscience, 276, 29-47, doi: 10.1016/j.neuroscience.2013.11.029.
- Clarke, L. E., Young, K. M., Hamilton, N. B., Li, H., Richardson, W. D., and Attwell, D. (2012) Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse, J. Neurosci., 32, 8173-8185, doi: 10.1523/jneurosci.0928-12.2012.
- McTigue, D. M., Wei, P., and Stokes, B. T. (2001) Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord, J. Neurosci., 21, 3392-3400, doi: 10.1523/JNEUROSCI.21-10-03392.2001.
- Birey, F., Kloc, M., Chavali, M., Hussein, I., Wilson, M., Christoffel, D. J., Chen, T., Frohman, M. A., Robinson, J. K., Russo, S. J., Maffei, A., and Aguirre, A. (2015) Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2, Neuron, 88, 941-956, doi: 10.1016/j.neuron.2015.10.046.
- Hughes, E. G., Kang, S. H., Fukaya, M., and Bergles, D. E. (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain, Nat. Neurosci., 16, 668-676, doi: 10.1038/nn.3390.
- Zawadzka, M., Rivers, L. E., Fancy, S. P., Zhao, C., Tripathi, R., Jamen, F., Young, K., Goncharevich, A., Pohl, H., Rizzi, M., Rowitch, D. H., Kessaris, N., Suter, U., Richardson, W. D., and Franklin, R. J. (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination, Cell Stem Cell, 6, 578-590, doi: 10.1016/j.stem.2010.04.002.
- Kuhlmann, T., Miron, V., Cui, Q., Wegner, C., Antel, J., and Br�ck, W. (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis, Brain, 131, 1749-1758, doi: 10.1093/brain/awn096.
- Foote, A. K., and Blakemore, W. F. (2005) Inflammation stimulates remyelination in areas of chronic demyelination, Brain, 128, 528-539, doi: 10.1093/brain/awh417.
- Kuhlmann, T., Ludwin, S., Prat, A., Antel, J., Br�ck, W., and Lassmann, H. (2017) An updated histological classification system for multiple sclerosis lesions, Acta Neuropathol., 133, 13-24, doi: 10.1007/s00401-016-1653-y.
- Kawachi, I., and Lassmann, H. (2017) Neurodegeneration in multiple sclerosis and neuromyelitis optica, J. Neurol. Neurosurg. Psychiatry, 88, 137-145, doi: 10.1136/jnnp-2016-313300.
- Den�ve, M., Biotti, D., Patsoura, S., Ferrier, M., Meluchova, Z., Mahieu, L., Heran, F., Vignal, C., Deschamps, R., Gout, O., Champfleur, N. M., Ayrignac, X., Dalli�re, C. C., Labauge, P., Dulau, C., Tourdias, T., Dumas, H., Cognard, C., Brassat, D., and Bonneville, F. (2019) MRI features of demyelinating disease associated with anti-MOG antibodies in adults, J. Neuroradiol., 46, 312-318, doi: 10.1016/j.neurad.2019.06.001.
- Ramanathan, S., Mohammad, S., Tantsis, E., Nguyen, T. K., Merheb, V., Fung, V. S. C., White, O. B., Broadley, S., Lechner-Scott, J., Vucic, S., Henderson, A. P. D., Barnett, M. H., Reddel, S. W., Brilot, F., Dale, R. C., and Australasian and New Zealand MOG Study Group (2018) Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination, J. Neurol. Neurosurg. Psychiatry, 89, 127-137, doi: 10.1136/jnnp-2017-316880.
Supplementary files
