1D Polymeric Iodoantimonates(III) with 1-Methylpyridinium and 3-Bromo-1-methylpyridinium Cations: Structures and Properties
- Autores: Shentseva I.A.1, Usol’tsev A.N.1, Korobeinikov N.A.1,2, Adonin S.A.1,3
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Edição: Volume 51, Nº 1 (2025)
- Páginas: 12-19
- Seção: Articles
- URL: https://rjeid.com/0132-344X/article/view/691612
- DOI: https://doi.org/10.31857/S0132344X25010023
- EDN: https://elibrary.ru/MHOIKJ
- ID: 691612
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The reactions of SbI3 with iodides of cations of the pyridinium family in a mixture of acetonitrile and acetone afford two polymeric iodoantimonate complexes: (1-MePy)[SbI4] (I) and (3-Br-1-MePy)[SbI4] (II). Specific features of the crystal structures are determined by X-ray diffraction (XRD). The thermal stability of compounds I and II is evaluated by thermogravimetry. The optical forbidden bandgaps are estimated from the diffuse reflectance spectra.
			                Palavras-chave
Sobre autores
I. Shentseva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
A. Usol’tsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
N. Korobeinikov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
														Email: korobeynikov@niic.nsc.ru
				                					                																			                												                								Novosibirsk, Russia; Novosibirsk, Russia						
S. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia; Irkutsk, Russia
Bibliografia
- Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
- Buikin P.A., Rudenko A.Y., Ilyukhin A.B. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 111. https://doi.org/10.1134/S1070328420020049
- Buikin P.A., Rudenko A.Y., Baranchikov A.E. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 6. P. 373. https://doi.org/10.1134/S1070328418060015
- Chen Y., Yang Z., Guo C.X. et al. // Eur. J. Inorg. Chem. 2010. № 33. P. 5326. https://doi.org/10.1002/ejic.201000755
- Möbs J., Gerhard M., Heine J. // Dalton Trans. 2020. V. 49. № 41. P. 14397. https://doi.org/10.1039/d0dt03427d
- Hrizi C., Trigui A., Abid Y. et al. // J. Solid State Chem. 2011. V. 184. № 12. P. 3336. https://doi.org/10.1016/j.jssc.2011.10.004
- Sharutin V.V., Pakusina A.P., Sharutina O.K. et al. // Russ. J. Coord. Chem. 2004. V. 30. № 8. P. 541. https://doi.org/10.1023/B:RUCO.0000037432.61330.07
- Möbs J., Stuhrmann G., Weigend F. et al. // Chem. Eur. J. 2022. https://doi.org/10.1002/chem.202202931
- Zhao J.-Q., Shi H.-S., Zeng L.-R. et al. // Chem. Eng. J. 2022. V. 431. https://doi.org/10.1016/j.cej.2021.134336
- Feng L.-J., Zhao Y.-Y., Song R.-Y. et al. // Inorg. Chem. Commun. 2022. V. 136. https://doi.org/10.1016/j.inoche.2021.109146
- Fateev S.A., Petrov A.A., Khrustalev V.N. et al. // Chem. Mater. 2018. V. 30. № 15. P. 5237. https://doi.org/10.1021/acs.chemmater.8b01906
- Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
- Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 992. https://doi.org/10.1134/S0036023622070075
- Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
- Zhang Q., Wu Y., Fu H. et al. // J. Colloid Interface Sci. 2024. V. 664. № March. P. 809. https://doi.org/10.1016/j.jcis.2024.03.057
- Huang Y., Yu J., Wu Z. et al. // RSC Adv. 2024. V. 14. № 7. P. 4946. https://doi.org/10.1039/d3ra07998h
- Chen Z., Hu Y., Wang J. et al. // Chem. Mater. 2020. V. 32. № 4. P. 1517. https://doi.org/10.1021/acs.chemmater.9b04582
- Dai Y., Poidevin C., Ochoa-Hernández C. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 14. P. 5788. https://doi.org/10.1002/anie.201915034
- Wu L.Y., Mu Y.F., Guo X.X. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 28. P. 9491. https://doi.org/10.1002/anie.201904537
- Lin K., Xing J., Quan L.N. et al. // Nature. 2018. V. 562. № 7726. P. 245. https://doi.org/10.1038/s41586-018-0575-3
- Igbari F., Wang Z.K., Liao L.S. // Adv. Energy Mater. 2019. V. 9. № 12. P. 1. https://doi.org/10.1002/aenm.201803150
- Stranks S.D., Snaith H.J. // Nat. Nanotechnol. 2015. V. 10. № 5. P. 391. https://doi.org/10.1038/nnano.2015.90
- Li X., Shi J., Chen J. et al. // Materials (Basel). 2023. V. 16. № 12. https://doi.org/10.3390/ma16124490
- Lei Y., Wang S., Xing J. et al. // Inorg. Chem. 2020. V. 59. № 7. P. 4349. https://doi.org/10.1021/acs.inorgchem.9b03277
- Kojima A., Teshima K., Shirai Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
- Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. // Prog. Photovoltaics Res. Appl. 2022. V. 30. № 7. P. 687. https://doi.org/10.1002/pip.3595
- Hu Y.Q., Hui H.Y., Lin W.Q. et al. // Inorg. Chem. 2019. V. 58. № 24. P. 16346. https://doi.org/10.1021/acs.inorgchem.9b01439
- Dennington A.J., Weller M.T. // Dalton Trans. 2018. V. 47. № 10. P. 3469. https://doi.org/10.1039/c7dt04280a
- Mastryukov M.V., Son A.G., Tekshina E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1652. https://doi.org/10.1134/S0036023622100540
- Liu H., Zhang Z., Zuo W. et al. // Adv. Energy Mater. 2023. V. 13. № 3. https://doi.org/10.1002/aenm.202202209
- Pai N., Chatti M., Fürer S.O. et al. // Adv. Energy Mater. 2022. V. 12. № 32. P. 2201482. https://doi.org/10.1002/aenm.202201482
- Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/J.CCR.2015.10.010
- Wu L.-M., Wu X.-T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/J.CCR.2009.08.003
- Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10
- Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. № 9. P. 5360. https://doi.org/10.1021/acs.cgd.1c00654
- Eliseeva A.A., Ivanov D.M., Rozhkov A.V. et al. // JACS Au. 2021. V. 1. № 3. P. 354. https://doi.org/10.1021/jacsau.1c00012
- Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // CrystEngComm. 2020. V. 22. № 24. P. 4180. https://doi.org/10.1039/c6ra90077a
- Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. № 16. P. 2230. https://doi.org/10.1039/d0qo00678e
- Kubasov A.S., Avdeeva V.V. // 2024. № Ii. P. 12.
- Ball M.L., Milić J.V., Loo Y.L. // Chem. Mater. 2022. V. 34. № 6. P. 2495. https://doi.org/10.1021/acs.chemmater.1c03117
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V.O. V., Bourhis L.J.L.J., Gildea R.J.R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Oswald I.W.H., Mozur E.M., Moseley I.P. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5818. https://doi.org/10.1021/acs.inorgchem.9b00170
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/JP8111556
- Pohl S., Lotz R., Saak W. et al. // Angew. Chem. Int. Ed. English. 1989. V. 28. № 3. P. 344. https://doi.org/10.1002/anie.198903441
- Janczak J., Perpétuo G.J. // Acta Crystallogr. C. 2006. V. 62. № 7. P. M323. https://doi.org/10.1107/S010827010601910X
- Li Y., Xu Z., Liu X. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 6544. https://doi.org/10.1021/acs.inorgchem.9b00718
- Sharutin V.V., Senchurin V.S., Sharutina O.K. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1561. https://doi.org/10.1134/S0036023611100196
- Möbs J., Stuhrmann G., Wippermann S. et al. // ChemPlusChem. 2023. V. 88. № 6. P. E202200403.
- Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
- Bhattacharyya D., Chaudhuri S., Pal A. // Vacuum. 1992. V. 43. № 4. P. 313. https://doi.org/10.1016/0042-207X(92)90163-Q
- Mousdis G.A., Ganotopoulos N.M., Barkaoui H. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 28. P. 3401. https://doi.org/10.1002/ejic.201700277
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
