Гидрирование продуктов переработки полисахаридов биомассы, содержащих фурановый фрагмент, на палладиевом катализаторе на основе мезопористого алюмосиликата

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синтезирован катализатор на основе мезопористого алюмосиликата Al-MCM-41, содержащий наночастицы палладия. Катализатор исследован в жидкофазном гидрировании фурфурола, 5-гидроксиметилфурфурола и фурфурилового спирта при начальном давлении водорода 5 МПа. Изучено влияние времени реакции, концентрации катализатора, температуры и природы растворителя на конверсию и распределение продуктов гидрирования фурфурола. Установлено, что в водной среде в присутствии Pd/Al-MCM-41 фурфурол превращается преимущественно в тетрагидрофурфуриловый спирт в мягких условиях (100°С, 45 мин) при полной конверсии субстрата. Показано влияние структуры продуктов переработки полисахаридов биомассы, содержащих фурановый фрагмент, на конверсию и селективность процесса гидрирования на катализаторе Pd/Al-MCM-41 в водной среде.

Full Text

Restricted Access

About the authors

Екатерина Алексеевна Ролдугина

Московский государственный университет им. М. В. Ломоносова

Author for correspondence.
Email: rolduginakate@mail.ru
ORCID iD: 0000-0002-9194-1097

химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Анастасия Алексеевна Ситникова

Московский государственный университет им. М. В. Ломоносова

Email: rolduginakate@mail.ru
ORCID iD: 0009-0009-1429-3477

химический факультет

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Максим Павлович Бороноев

Московский государственный университет им. М. В. Ломоносова

Email: rolduginakate@mail.ru
ORCID iD: 0000-0001-6129-598X

химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Искандер Ильгизович Шакиров

Московский государственный университет им. М. В. Ломоносова

Email: rolduginakate@mail.ru
ORCID iD: 0000-0003-2029-693X

химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

Юлия Сергеевна Кардашева

Московский государственный университет им. М. В. Ломоносова

Email: rolduginakate@mail.ru
ORCID iD: 0000-0002-6580-1082

химический факультет, к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинские горы, д. 1, стр. 3

References

  1. Anjali, Sravanthi Veluturla, Saranya R., Vijaya Lakshmi S., Hemanth K. M. Nanoparticles for the synthesis of bio-based chemical 5-hydroxymethyl furfural from agricultural waste and biomass-derived carbohydrates — A review // J. Chem. Technol. Biotechnol. 2024. V. 99. N 7. P. 1477–1492. https://doi.org/10.1002/jctb.7634
  2. Martínez-Edo G., Balmori A., Pontón I., Martí del Rio A., Sánchez-García D. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis // Catalysts. 2018. V. 8. N 12. ID 617. https://doi.org/10.3390/catal8120617
  3. Climent M. J., Corma A., Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels // Green Chem. 2014. V. 16. P. 516–547. https://doi.org/10.1039/C3GC41492B
  4. Jiménez-Morales I., Moreno-Recio M., Santamaría-González J., Maireles-Torres P., Jiménez-López A. Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst // Appl. Catal. B. 2015. V. 164. P. 70–76. https://doi.org/10.1016/j.apcatb.2014.09.002
  5. Lima S., Pillinger M., Valente A. A. Dehydration of d-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1) // Catal. Commun. 2008. V. 9. N 11–12. P. 2144–2148. https://doi.org/10.1016/j.catcom.2008.04.016
  6. Fang W., Riisager A. Recent advances in heterogeneous catalytic transfer hydrogenation/hydrogenolysis for valorization of biomass-derived furanic compounds // Green Chem. 2021. V. 23. P. 670–688. https://doi.org/10.1039/D0GC03931D
  7. Chatterjee M., Matsushima K., Ikushima Y., Sato M., Yokoyama T., Kawanami H., Suzuki T. Production of linear alkane via hydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide // Green Chem. 2010. V. 12. P. 779–782. https://doi.org/10.1039/B919810P
  8. Li X., Deng Q., Zhou Sh., Zou J., WangJ., Wang R., Zeng Zh., Deng Sh., Deng Sh. Double-metal cyanide-supported Pd catalysts for highly efficient hydrogenative ring-rearrangement of biomass-derived furanic aldehydes to cyclopentanone compounds // J. Catal. 2019. V. 378. P. 201–208. https://doi.org/10.1016/j.jcat.2019.08.036
  9. Suyanta S., Narsito, Wahyuni E. T., Triyono. Synthesis and characterization of mesoporous aluminosilicates Al-MCM-41 and investigation of its thermal, hydrothermal and acidity stability // Indo. J. Chem. 2010. V. 10. N 1. P. 41–45. https://doi.org/10.22146/ijc.21478
  10. Rashwan W. E., Abou-El-Sherbini K. S., Wahba M. A., Sayed Ahmed S. A., Weidler P. G. High stable Al-MCM-41: Structural characterization and evaluation for removal of methylene blue from aqueous solution. Silicon // 2019. V. 12. N 9. P. 2017–2029. https://doi.org/10.1007/s12633-019-00262-x
  11. Shaik M., Ali Z., Khan M., Kuniyil M., Assal M., Alkhathlan H., Adil S. Green synthesis and characterization of palladium nanoparticles using Origanum vulgare L. Extract and their catalytic activity // Molecules. 2017. V. 22. N 1. ID 165. https://doi.org/10.3390/molecules22010165
  12. Huirache-Acuña R., Zepeda T. A., Vázquez P. J., Rivera-Muñoz E. M., Maya-Yescas R., Pawelec B., Alonso-Núñez G. The use of inorganic Al-HMS as a support for NiMoW sulfide HDS catalysts // Inorg. Chim. Acta. 2021. V. 524. ID 120450. https://doi.org/10.1016/j.ica.2021.120450
  13. Tsatsos S., Ladas S., Kyriakou G. Electronic properties and reactivity of furfural on a model Pt(111) catalytic surface // J. Phys. Chem. C. 2020. V. 124. N 48. P. 26268–26278. https://doi.org/10.1021/acs.jpcc.0c07709
  14. Tong Z., Li X., Dong J., Gao R., Deng Q., Wang J., Deng S. Adsorption configuration-determined selective hydrogenative ring opening and ring rearrangement of furfural over metal phosphate // ACS Catal. 2021. V. 11. N 11. P. 6406–6415. https://doi.org/10.1021/acscatal.0c05497
  15. Pirmoradi M., Gulotty Jr. R. J., Kastner J. R. Continuous hydroxyketone production from furfural using Pd–TiO2 supported on activated carbon // Catal. Sci. Technol. 2020. V. 10. P. 7002–7015. https://doi.org/10.1039/D0CY01556C
  16. Mironenko R. M., Talsi V. P., Gulyaeva T. I. Aqueous-phase hydrogenation of furfural over supported palladium catalysts: Effect of the support on the reaction routes // React. Kinet. Mech. Catal. 2019. V. 126. P. 811–827. https://doi.org/10.1007/s11144-018-1505-y
  17. Hu X., Kadarwati S., Song Y., Li Z. Simultaneous hydrogenation and acid-catalyzed conversion of the biomass-derived furans in solvents with distinct polarities // RSC Adv. 2016. V. 6. P. 4647–4656. https://doi.org/10.1039/C5RA22414D
  18. Zhao Z., Bababrik R., Xue W., Li Y., Briggs N. M., Nguyen D.-T., Nguyen U., Crossley S. P., Wang S., Wang B., Resasco D. E. Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water // Nat. Catal. 2019. V. 2. P. 431–436. https://doi.org/10.1038/s41929-019-0257-z
  19. Endot N. A., Junid R., Jamil M. Sh. Sh. Insight into biomass upgrade: A review on hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) // Molecules. 2021. V. 26. N 22. ID 6848. https://doi.org/10.3390/molecules26226848
  20. Gong W., Chen C., Zhang Y., Zhou H., Wang H., Zhang H., Zhao H. Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst // ACS Sustain. Chem. Eng. 2017. V. 5. N 3. P. 2172–2180. https://doi.org/10.1021/acssuschemeng.6b02343
  21. Li J., Xi Y., Qiao Y., Zhao Z., Liu J., Li F. Solvent effects on heterogeneous catalysis for the selective hydrogenation // ChemCatChem. 2024. V. 6. N 14. ID e202400120. https://doi.org/10.1002/cctc.202400120
  22. Chen Sh., Wojcieszak R., Dumeignil F., Marceau E., Royer S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural // Chem. Rev. 2018. V. 118. N 22. P. 11023–11117. https://doi.org/10.1021/acs.chemrev.8b00134
  23. Gao X., Tian S., Jin Y., Wan X., Zhou C., Chen R., Yang Y. Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: Solvent effect of isopropanol and hydrogen activation // ACS Sustain. Chem. Eng. 2020. V. 8. P. 12722–12730. https://doi.org/10.1021/acssuschemeng.0c04891
  24. Longo L., Taghavi S., Ghedini E., Menegazzo F., Di Michele A., Cruciani G., Signoretto M. Selective hydrogenation of 5-hydroxymethylfurfural to 1-hydroxy-2,5-hexanedione by biochar-supported Ru catalysts // ChemSusChem. 2022. V. 15. N 13. ID e202200437. https://doi.org/10.1002/cssc.202200437
  25. Dutta S., Bhat N. S. Catalytic transformation of biomass-derived furfurals tocyclopentanones and their derivatives: A review // ACS Omega. 2021. V. 6. N 5. P. 35145–35875. https://doi.org/10.1021/acsomega.1c05861.
  26. Morales M. V., Conesa J. M., Campos-Castellanos E., Guerrero-Ruiz A., Rodríguez-Ramos I. Critical factors affecting the selective transformation of 5-hydroxymethylfurfural to 3-hydroxymethylcyclopentanone over Ni catalysts // ChemSusChem. 2024. V. 17. N 23. ID e202400559. https://doi.org/10.1002/cssc.202400559

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Ammonia temperature-programmed desorption spectrum (a) and small-angle scattering diffraction pattern (b) of mesoporous aluminosilicate Al-MCM-41.

Download (126KB)
3. Fig. 2. Nitrogen adsorption-desorption isotherms and pore size distribution of mesoporous aluminosilicate Al-MCM-41 and Pd-containing catalyst based on it.

Download (105KB)
4. Fig. 3. X-ray diffraction pattern (a), micrograph and Pd nanoparticle size distribution diagram (b) of Pd catalyst based on mesoporous aluminosilicate Al-MCM-41.

Download (202KB)
5. Fig. 4. Hydrogenation of furfural in the presence of Pd/Al-MCM-41 catalyst at different reaction times (a) and substrate/catalyst weight ratios (b). Reaction conditions: 0.6 mmol furfural, 2 ml water, 5 MPa H2, 100°C, 3 mg Pd/Al-MCM-41 (a), 45 min (b). Other products: 4-oxopentanal, 5-hydroxy-2-pentanone. * 100–200°C, 45 min, 3 mg Al-MCM-41 support.

Download (206KB)
6. Fig. 5. Hydrogenation of furfural in the presence of Pd/Al-MCM-41 catalyst in aqueous medium (a) and in toluene (b). Reaction conditions: 0.6 mmol furfural, 3 mg Pd/Al-MCM-41, 5 MPa H2, 30 min, 2 ml water (a), 2 ml toluene (b). Other products: 2-methyltetrahydrofuran, 2-methylfuran, 3-hydroxycyclopentanone (a), C5+ condensation products (b). * 8 mg Pd/Al-MCM-41.

Download (210KB)
7. Fig. 6. Hydrogenation of furfuryl alcohol (a) and 5-hydroxymethylfurfural (b) in the presence of Pd/Al-MCM-41 catalyst. Reaction conditions: 0.6 mmol substrate, 2 ml water, 5 MPa H2, 30 min, Pd/Al-MCM-41 — 3 mg (a), 6 mg (b).

Download (212KB)

Copyright (c) 2025 Russian Academy of Sciences