Half-Plane with a One-Dimensional Semi-Infinite Stiffener: Application to Solving the Problem of Pile–Rock Interaction
- Autores: Vlasov A.N.1, Vlasov D.A.2, Kovalenko M.D.1
-
Afiliações:
- Institute of Applied Mechanics, Russian Academy of Sciences
- Moscow State University of Civil Engineering (National Research University)
- Edição: Volume 89, Nº 2 (2025)
- Páginas: 348-364
- Seção: Articles
- URL: https://rjeid.com/0032-8235/article/view/686782
- DOI: https://doi.org/10.31857/S0032823525020105
- EDN: https://elibrary.ru/ILTDHE
- ID: 686782
Citar
Resumo
An exact solution to an elastic boundary value problem is constructed for a half-plane with a one-dimensional, semi-infinite stiffener perpendicular to its straight boundary. A point force is applied at the top of the stiffener. This solution is compared with a numerical simulation of a finite-length pile using three-dimensional finite element (FE) analysis. By applying correction factors, the transition from a two-dimensional problem to a three-dimensional one is achieved in the analytical solution.
Palavras-chave
Sobre autores
A. Vlasov
Institute of Applied Mechanics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: bah1955@yandex.ru
Rússia, Moscow
D. Vlasov
Moscow State University of Civil Engineering (National Research University)
Email: vlasov.daniil1994@gmail.com
Rússia, Moscow
M. Kovalenko
Institute of Applied Mechanics, Russian Academy of Sciences
Email: kov08@inbox.ru
Rússia, Moscow
Bibliografia
- Carter J.P., Kulhawy F.H. Analysis and Design of Drilled Shaft Foundations Socketed into Rock. Final Report No. EL-5918. Palo Alto: Electric Power Res. Inst., 1988. 190 p.
- Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and Series. Vol. 1. Elementary Functions. N.Y.: Gordon&Breach Sci. Pub., 1986. 798 p.
- Ketch V., Teodorescu P. Introduction to the Theory of Generalized Functions with Applications in Engineering. N.Y.: Wiley, 1978.
- Matrosov A.V., Kovalenko M.D., Menshova I.V., Kerzhaev A.P. Method of initial functions and integral Fourier transform in some problems of the theory of elasticity // Z. Angew. Math. Phys, 2020, vol. 71, no. 1, art. 24, 19 p.
- Lebedev N.N. Special Functions and Their Applications. N.Y.: Dover, 1972. 308 p.
- Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and Series. Vol. 2. Special Functions. N.Y.: Gordon&Breach Sci. Pub., 1986. 756 p.
Arquivos suplementares
