Regulation of retrotransposons in Drosophila melanogaster somatic tissues
- Authors: Milyaeva P.A.1,2, Kukushkina I.V.1, Lavrenov A.R.1,3, Kuzmin I.V.1, Kim A.I.1,2, Nefedova L.N.1
-
Affiliations:
- Lomonosov Moscow State University
- Shenzhen MSU-BIT University
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
- Issue: Vol 58, No 1 (2024)
- Pages: 99-120
- Section: ГЕНОМИКА. ТРАНСКРИПТОМИКА
- URL: https://rjeid.com/0026-8984/article/view/655345
- DOI: https://doi.org/10.31857/S0026898424010094
- EDN: https://elibrary.ru/ODXKBV
- ID: 655345
Cite item
Abstract
Regulation of retrotransposon activity in somatic tissues is a complex mechanism that is still not studied in details. It is strongly believed that siRNA interference is main mechanism of retrotransposon activity regulation outside the gonads, but recently was demonstrated that piRNA interference participates in retrotransposon repression during somatic tissue development. In this work, using RT-PCR, we demonstrated that during ontogenesis piRNA interference determinates retrotransposon expression level on imago stage and retrotransposons demonstrate tissue-specific expression. The major factor of retrotransposon tissue-specific expression is presence of transcription factor binding sites in their regulatory regions.
Full Text

About the authors
P. A. Milyaeva
Lomonosov Moscow State University; Shenzhen MSU-BIT University
Email: nefedova@mail.bio.msu.ru
Faculty of Biology
Russian Federation, Moscow, 119234; China, Longgang District, Shenzhen 518172I. V. Kukushkina
Lomonosov Moscow State University
Email: nefedova@mail.bio.msu.ru
Faculty of Biology
Russian Federation, Moscow, 119234A. R. Lavrenov
Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Email: nefedova@mail.bio.msu.ru
Faculty of Biology
Russian Federation, Moscow, 119234; Moscow, 119071I. V. Kuzmin
Lomonosov Moscow State University
Email: nefedova@mail.bio.msu.ru
Faculty of Biology
Russian Federation, Moscow, 119234A. I. Kim
Lomonosov Moscow State University; Shenzhen MSU-BIT University
Email: nefedova@mail.bio.msu.ru
Faculty of Biology
Russian Federation, Moscow, 119234; China, Longgang District, Shenzhen 518172L. N. Nefedova
Lomonosov Moscow State University
Author for correspondence.
Email: nefedova@mail.bio.msu.ru
Faculty of Biology
Russian Federation, Moscow, 119234References
- Théron E., Dennis C., Brasset E., Vaury C. (2014) Distinct features of the piRNA pathway in somatic and germ cells: from piRNA cluster transcription to piRNA processing and amplification. Mobile DNA. 5, 28.
- Qi H., Watanabe T., Ku H.-Y., Liu N., Zhong M., Lin H. (2011) The Yb Body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. Biol. Chem. 286, 3789–3797. https://doi.org/10.1074/jbc.M110.193888
- Dumesic P.A., Natarajan P., Chen C., Drinnenberg I.A., Schiller B.J., Thompson J., Moresco J.J., Yates J.R., Bartel D.P., Madhani H.D. (2013) Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell. 152, 957–968. https://doi.org/10.1016/j.cell.2013.01.046
- Zhang Z., Wang J., Schultz N., Zhang F., Parhad S.S., Tu S., Vreven T., Zamore P.D., Weng Z., Theurkauf W.E. (2014) The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 157, 1353–1363. https://doi.org/10.1016/j.cell.2014.04.030
- Wakisaka K.T., Tanaka R., Hirashima T., Muraoka Y., Azuma Y., Yoshida H., Ichiyanagi K., Ohno S., Itoh M., Yamaguchi M. (2019) Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. 1708, 207‒219. https://doi.org/10.1016/j.brainres.2018.12.028
- Andersen P.R., Tirian L., Vunjak M., Brennecke J. (2017) A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 549, 54–59. https://doi.org/10.1038/nature23482
- Schnabl J., Wang J., Hohmann U., Gehre M., Batki J., Andreev V.I., Purkhauser K., Fasching N., Duchek P., Novatchkova M., Mechtler K., Plaschka C., Patel D.J., Brennecke J. (2021) Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev. 35, 392–409. https://doi.org/10.1101/gad.347989.120
- Chang Y.-H., Dubnau J. (2019) The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila tdp-43 model of neurodegeneration. Curr. Biol. 29, 3135‒3152.e4. doi: 10.1016/j.cub.2019.07.071
- Onishi R., Sato K., Murano K., Negishi L., Siomi H., Siomi M.C. (2020) Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. 6(50), eaaz 7420. doi: 10.1126/sciadv.aaz7420
- Muerdter F., Guzzardo P.M., Gillis J., Luo Y., Yu Y., Chen C., Fekete R., Hannon G.J. (2013) A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell. 50, 736–748. doi: 10.1016/j.molcel.2013.04.006
- Stolyarenko A.D. (2020) Nuclear argonaute Piwi gene mutation affects rRNA by inducing rRNA fragment accumulation, antisense expression, and defective processing in Drosophila ovaries. Int. J. Mol. Sci. 21, 1119. https://doi.org/10.3390/ijms21031119
- Kim K.W. (2019) PIWI proteins and piRNAs in the nervous system. Mol. Cells. 42, 12, 828‒835. doi: 10.14348/molcells.2019.0241
- Kim K.W., Tang N.H., Andrusiak M.G., Wu Z., Chisholm A.D., Jin Y. (2018) A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron. 97, 511‒519.e6. https://doi.org/10.1016/j.neuron.2018.01.014
- Perrat P.N., DasGupta S., Wang J., Theurkauf W., Weng Z., Rosbash M., Waddell S. (2013) Transposition-driven genomic heterogeneity in the Drosophila brain. Science. 340, 91–95. https://doi.org/10.1126/science.1231965
- Ross R.J., Weiner M.M., Lin H. (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 505, 353–359. https://doi.org/10.1038/nature12987
- Zuo L., Wang Z., Tan Y., Chen X., Luo X. (2016) piRNAs and their functions in the brain. Int. J. Hum. Genet. 16(1-2), 53–60. doi: 10.1080/09723757.2016.11886278
- Nampoothiri S.S., Rajanikant G.K. (2017) Decoding the ubiquitous role of microRNAs in neurogenesis. Mol. Neurobiol. 54, 2003–2011. https://doi.org/10.1007/s12035-016-9797-2
- Trizzino M., Kapusta A., Brown C.D. (2018) Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics. 19, 468. https://doi.org/10.1186/s12864-018-4850-3
- Moschetti R., Palazzo A., Lorusso P., Viggiano L., Massimiliano Marsano R. (2020) “What You Need, Baby, I Got It”: transposable elements as suppliers of cis-operating sequences in Drosophila. Biology (Basel). 9, 25. https://doi.org/10.3390/biology9020025
- Мустафин Р.Н., Хуснутдинова Э. К, (2020) Участие мобильных элементов в нейрогенезе. Вавиловский журн. генетики и селекции. 24, 2, 209–218.
- Villanueva-Cañas J.L., Horvath V., Aguilera L., González J. (2019) Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster. Nucl. Acids Res. 47(13), 6842‒6857. https://doi.org/10.1093/nar/gkz490
- Senft A.D., Macfarlan T.S. (2021) Transposable elements shape the evolution of mammalian development. Nat. Rev. Genet. 22(11), 691‒711. doi: 10.1038/s41576-021-00385-1
- Ким А.И., Беляева Е.С., Ларкина З.Г., Асланян М.М. (1989) Генетическая нестабильность и транспозиции мобильного элемента МДГ4 в мутаторной линии Drosophila melanogaster. Генетика. 25(10), 1747‒1756.
- Hafer N., Schedl P. (2006) Dissection of larval CNS in Drosophila melanogaster. J. Vis. Exp. 1, 85. doi: 10.3791/85
- Hur J.K., Luo Y., Moon S., Ninova M., Marinov G.K., Chung Y.D., Aravin A.A. (2016) splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev. 30, 840–855. https://doi.org/10.1101/gad.276030.115
- Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. (2022) Database resources of the national center for biotechnology information. Nucl. Acids Res. 50(D1), D20‒D26. https://doi.org/10.1093/nar/gkab1112
- Нефедова Л.Н., Урусов Ф.А., Романова Н.И., Шмелькова А.О., Ким А.И. (2012) Исследование транскрипционной и транспозиционной активности ретротранспозона Tirant в линиях Drosophila melanogaster, мутантных по локусу flamenco. Генетика. 48(11), 1271‒1271. https://doi.org/10.1134/S1022795412110063
- Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. (2011) Integrative genomics viewer. Nat. Biotechnol. 29(1), 24‒26. doi: 10.1038/nbt.1754
- Ewing A.D., Smits N., Sanchez-Luque F.J., Faivre J., Brennan P.M., Richardson S.R., Cheetham S.W., Faulkner G.J. (2020) Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell. 80, 915‒928.e5. https://doi.org/10.1016/j.molcel.2020.10.024
- Kaminker J.S., Bergman C.M., Kronmiller B., Carlson J., Svirskas R., Patel S., Frise E., Wheeler D.A., Lewis S.E., Rubin G.M., Ashburner M., Celniker S.E. (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 3(12), RESEARCH0084. doi: 10.1186/gb-2002-3-12-research0084
- Okonechnikov K., Golosova O., Fursov M., Unipro (2012) UGENE: a unified bioinformatics toolkit. Bioinformatics. 28, 1166‒1167. doi: 10.1093/bioinformatics/bts091
- Gramates L.S., Agapite J., Attrill H., Calvi B.R., Crosby M.A., Dos Santos G., Goodman J.L., Goutte-Gattat D., Jenkins V.K., Kaufman T., Larkin A., Matthews B.B., Millburn G., Strelets V.B.; the FlyBase Consortium. (2022) FlyBase: a guided tour of highlighted features. Genetics. 220(4), iyac035. https://doi.org/10.1093/genetics/iyac035
- Lee Ch., Huang Ch.-Hs. (2013) LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. BioTechniques. 54, 141–153. https://doi.org/doi 10.2144/000113999
- Mani S.R., Megosh H., Lin H. (2014) PIWI proteins are essential for early Drosophila embryogenesis. Develop. Biol. 385, 340–349. https://doi.org/10.1016/j.ydbio.2013.10.017
- Romero-Soriano V., Guerreiro M.P.G. (2016) Expression of the retrotransposon helena reveals a complex pattern of TE deregulation in Drosophila hybrids. PLoS One. 11, e0147903. https://doi.org/10.1371/journal.pone.0147903
- Wang S.H., Elgin S.C. (2011) Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc. Natl. Acad. Sci. USA. 108(52), 21164‒21169. https://doi.org/10.1073/pnas.1107892109
- Klenov M.S., Sokolova O.A., Yakushev E.Y., Stolyarenko A.D., Mikhaleva E.A., Lavrov S.A., Gvozdev V.A. (2011) Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc. Natl. Acad. Sci. USA. 108(46), 18760‒18765. https://doi.org/10.1073/pnas.1106676108
- Gebert D., Neubert L.K., Lloyd C., Gui J., Lehmann R., Teixeira F.K. (2021) Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol. Cell. 81(19), 3965‒3978.e5. doi: 10.1016/j.molcel.2021.07.011
- Chung W.-J., Okamura K., Martin R., Lai E.C. (2008) Endogenous RNA interference provides a somatic defense against drosophila transposons. Curr. Biol. 18, 795–802. https://doi.org/10.1016/j.cub.2008.05.006
- Carthew R.W., Sontheimer E.J. (2009) Origins and mechanisms of miRNAs and siRNAs. Cell. 136, 642–655. doi: 10.1016/j.cell.2009.01.035
- Cacchione S., Cenci G., Raffa G.D. (2020) Silence at the end: how drosophila regulates expression and transposition of telomeric retroelements. J. Mol. Biol. 432, 4305–4321. https://doi.org/10.1016/j.jmb.2020.06.004
- Palazzo A., Lorusso P., Miskey C., Walisko O., Gerbino A., Marobbio C.M.T., Ivics Z., Marsano R.M. (2019) Transcriptionally promiscuous “Blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes. Mobile DNA. 10, 13. https://doi.org/10.1186/s13100-019-0155-6
Supplementary files
