Regulation of retrotransposons in Drosophila melanogaster somatic tissues

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Regulation of retrotransposon activity in somatic tissues is a complex mechanism that is still not studied in details. It is strongly believed that siRNA interference is main mechanism of retrotransposon activity regulation outside the gonads, but recently was demonstrated that piRNA interference participates in retrotransposon repression during somatic tissue development. In this work, using RT-PCR, we demonstrated that during ontogenesis piRNA interference determinates retrotransposon expression level on imago stage and retrotransposons demonstrate tissue-specific expression. The major factor of retrotransposon tissue-specific expression is presence of transcription factor binding sites in their regulatory regions.

Full Text

Restricted Access

About the authors

P. A. Milyaeva

Lomonosov Moscow State University; Shenzhen MSU-BIT University

Email: nefedova@mail.bio.msu.ru

Faculty of Biology

Russian Federation, Moscow, 119234; China, Longgang District, Shenzhen 518172

I. V. Kukushkina

Lomonosov Moscow State University

Email: nefedova@mail.bio.msu.ru

Faculty of Biology

Russian Federation, Moscow, 119234

A. R. Lavrenov

Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: nefedova@mail.bio.msu.ru

Faculty of Biology

Russian Federation, Moscow, 119234; Moscow, 119071

I. V. Kuzmin

Lomonosov Moscow State University

Email: nefedova@mail.bio.msu.ru

Faculty of Biology

Russian Federation, Moscow, 119234

A. I. Kim

Lomonosov Moscow State University; Shenzhen MSU-BIT University

Email: nefedova@mail.bio.msu.ru

Faculty of Biology

Russian Federation, Moscow, 119234; China, Longgang District, Shenzhen 518172

L. N. Nefedova

Lomonosov Moscow State University

Author for correspondence.
Email: nefedova@mail.bio.msu.ru

Faculty of Biology

Russian Federation, Moscow, 119234

References

  1. Théron E., Dennis C., Brasset E., Vaury C. (2014) Distinct features of the piRNA pathway in somatic and germ cells: from piRNA cluster transcription to piRNA processing and amplification. Mobile DNA. 5, 28.
  2. Qi H., Watanabe T., Ku H.-Y., Liu N., Zhong M., Lin H. (2011) The Yb Body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. Biol. Chem. 286, 3789–3797. https://doi.org/10.1074/jbc.M110.193888
  3. Dumesic P.A., Natarajan P., Chen C., Drinnenberg I.A., Schiller B.J., Thompson J., Moresco J.J., Yates J.R., Bartel D.P., Madhani H.D. (2013) Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell. 152, 957–968. https://doi.org/10.1016/j.cell.2013.01.046
  4. Zhang Z., Wang J., Schultz N., Zhang F., Parhad S.S., Tu S., Vreven T., Zamore P.D., Weng Z., Theurkauf W.E. (2014) The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 157, 1353–1363. https://doi.org/10.1016/j.cell.2014.04.030
  5. Wakisaka K.T., Tanaka R., Hirashima T., Muraoka Y., Azuma Y., Yoshida H., Ichiyanagi K., Ohno S., Itoh M., Yamaguchi M. (2019) Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. 1708, 207‒219. https://doi.org/10.1016/j.brainres.2018.12.028
  6. Andersen P.R., Tirian L., Vunjak M., Brennecke J. (2017) A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 549, 54–59. https://doi.org/10.1038/nature23482
  7. Schnabl J., Wang J., Hohmann U., Gehre M., Batki J., Andreev V.I., Purkhauser K., Fasching N., Duchek P., Novatchkova M., Mechtler K., Plaschka C., Patel D.J., Brennecke J. (2021) Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev. 35, 392–409. https://doi.org/10.1101/gad.347989.120
  8. Chang Y.-H., Dubnau J. (2019) The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila tdp-43 model of neurodegeneration. Curr. Biol. 29, 3135‒3152.e4. doi: 10.1016/j.cub.2019.07.071
  9. Onishi R., Sato K., Murano K., Negishi L., Siomi H., Siomi M.C. (2020) Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. 6(50), eaaz 7420. doi: 10.1126/sciadv.aaz7420
  10. Muerdter F., Guzzardo P.M., Gillis J., Luo Y., Yu Y., Chen C., Fekete R., Hannon G.J. (2013) A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell. 50, 736–748. doi: 10.1016/j.molcel.2013.04.006
  11. Stolyarenko A.D. (2020) Nuclear argonaute Piwi gene mutation affects rRNA by inducing rRNA fragment accumulation, antisense expression, and defective processing in Drosophila ovaries. Int. J. Mol. Sci. 21, 1119. https://doi.org/10.3390/ijms21031119
  12. Kim K.W. (2019) PIWI proteins and piRNAs in the nervous system. Mol. Cells. 42, 12, 828‒835. doi: 10.14348/molcells.2019.0241
  13. Kim K.W., Tang N.H., Andrusiak M.G., Wu Z., Chisholm A.D., Jin Y. (2018) A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron. 97, 511‒519.e6. https://doi.org/10.1016/j.neuron.2018.01.014
  14. Perrat P.N., DasGupta S., Wang J., Theurkauf W., Weng Z., Rosbash M., Waddell S. (2013) Transposition-driven genomic heterogeneity in the Drosophila brain. Science. 340, 91–95. https://doi.org/10.1126/science.1231965
  15. Ross R.J., Weiner M.M., Lin H. (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 505, 353–359. https://doi.org/10.1038/nature12987
  16. Zuo L., Wang Z., Tan Y., Chen X., Luo X. (2016) piRNAs and their functions in the brain. Int. J. Hum. Genet. 16(1-2), 53–60. doi: 10.1080/09723757.2016.11886278
  17. Nampoothiri S.S., Rajanikant G.K. (2017) Decoding the ubiquitous role of microRNAs in neurogenesis. Mol. Neurobiol. 54, 2003–2011. https://doi.org/10.1007/s12035-016-9797-2
  18. Trizzino M., Kapusta A., Brown C.D. (2018) Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics. 19, 468. https://doi.org/10.1186/s12864-018-4850-3
  19. Moschetti R., Palazzo A., Lorusso P., Viggiano L., Massimiliano Marsano R. (2020) “What You Need, Baby, I Got It”: transposable elements as suppliers of cis-operating sequences in Drosophila. Biology (Basel). 9, 25. https://doi.org/10.3390/biology9020025
  20. Мустафин Р.Н., Хуснутдинова Э. К, (2020) Участие мобильных элементов в нейрогенезе. Вавиловский журн. генетики и селекции. 24, 2, 209–218.
  21. Villanueva-Cañas J.L., Horvath V., Aguilera L., González J. (2019) Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster. Nucl. Acids Res. 47(13), 6842‒6857. https://doi.org/10.1093/nar/gkz490
  22. Senft A.D., Macfarlan T.S. (2021) Transposable elements shape the evolution of mammalian development. Nat. Rev. Genet. 22(11), 691‒711. doi: 10.1038/s41576-021-00385-1
  23. Ким А.И., Беляева Е.С., Ларкина З.Г., Асланян М.М. (1989) Генетическая нестабильность и транспозиции мобильного элемента МДГ4 в мутаторной линии Drosophila melanogaster. Генетика. 25(10), 1747‒1756.
  24. Hafer N., Schedl P. (2006) Dissection of larval CNS in Drosophila melanogaster. J. Vis. Exp. 1, 85. doi: 10.3791/85
  25. Hur J.K., Luo Y., Moon S., Ninova M., Marinov G.K., Chung Y.D., Aravin A.A. (2016) splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev. 30, 840–855. https://doi.org/10.1101/gad.276030.115
  26. Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. (2022) Database resources of the national center for biotechnology information. Nucl. Acids Res. 50(D1), D20‒D26. https://doi.org/10.1093/nar/gkab1112
  27. Нефедова Л.Н., Урусов Ф.А., Романова Н.И., Шмелькова А.О., Ким А.И. (2012) Исследование транскрипционной и транспозиционной активности ретротранспозона Tirant в линиях Drosophila melanogaster, мутантных по локусу flamenco. Генетика. 48(11), 1271‒1271. https://doi.org/10.1134/S1022795412110063
  28. Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. (2011) Integrative genomics viewer. Nat. Biotechnol. 29(1), 24‒26. doi: 10.1038/nbt.1754
  29. Ewing A.D., Smits N., Sanchez-Luque F.J., Faivre J., Brennan P.M., Richardson S.R., Cheetham S.W., Faulkner G.J. (2020) Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell. 80, 915‒928.e5. https://doi.org/10.1016/j.molcel.2020.10.024
  30. Kaminker J.S., Bergman C.M., Kronmiller B., Carlson J., Svirskas R., Patel S., Frise E., Wheeler D.A., Lewis S.E., Rubin G.M., Ashburner M., Celniker S.E. (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 3(12), RESEARCH0084. doi: 10.1186/gb-2002-3-12-research0084
  31. Okonechnikov K., Golosova O., Fursov M., Unipro (2012) UGENE: a unified bioinformatics toolkit. Bioinformatics. 28, 1166‒1167. doi: 10.1093/bioinformatics/bts091
  32. Gramates L.S., Agapite J., Attrill H., Calvi B.R., Crosby M.A., Dos Santos G., Goodman J.L., Goutte-Gattat D., Jenkins V.K., Kaufman T., Larkin A., Matthews B.B., Millburn G., Strelets V.B.; the FlyBase Consortium. (2022) FlyBase: a guided tour of highlighted features. Genetics. 220(4), iyac035. https://doi.org/10.1093/genetics/iyac035
  33. Lee Ch., Huang Ch.-Hs. (2013) LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. BioTechniques. 54, 141–153. https://doi.org/doi 10.2144/000113999
  34. Mani S.R., Megosh H., Lin H. (2014) PIWI proteins are essential for early Drosophila embryogenesis. Develop. Biol. 385, 340–349. https://doi.org/10.1016/j.ydbio.2013.10.017
  35. Romero-Soriano V., Guerreiro M.P.G. (2016) Expression of the retrotransposon helena reveals a complex pattern of TE deregulation in Drosophila hybrids. PLoS One. 11, e0147903. https://doi.org/10.1371/journal.pone.0147903
  36. Wang S.H., Elgin S.C. (2011) Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc. Natl. Acad. Sci. USA. 108(52), 21164‒21169. https://doi.org/10.1073/pnas.1107892109
  37. Klenov M.S., Sokolova O.A., Yakushev E.Y., Stolyarenko A.D., Mikhaleva E.A., Lavrov S.A., Gvozdev V.A. (2011) Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc. Natl. Acad. Sci. USA. 108(46), 18760‒18765. https://doi.org/10.1073/pnas.1106676108
  38. Gebert D., Neubert L.K., Lloyd C., Gui J., Lehmann R., Teixeira F.K. (2021) Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol. Cell. 81(19), 3965‒3978.e5. doi: 10.1016/j.molcel.2021.07.011
  39. Chung W.-J., Okamura K., Martin R., Lai E.C. (2008) Endogenous RNA interference provides a somatic defense against drosophila transposons. Curr. Biol. 18, 795–802. https://doi.org/10.1016/j.cub.2008.05.006
  40. Carthew R.W., Sontheimer E.J. (2009) Origins and mechanisms of miRNAs and siRNAs. Cell. 136, 642–655. doi: 10.1016/j.cell.2009.01.035
  41. Cacchione S., Cenci G., Raffa G.D. (2020) Silence at the end: how drosophila regulates expression and transposition of telomeric retroelements. J. Mol. Biol. 432, 4305–4321. https://doi.org/10.1016/j.jmb.2020.06.004
  42. Palazzo A., Lorusso P., Miskey C., Walisko O., Gerbino A., Marobbio C.M.T., Ivics Z., Marsano R.M. (2019) Transcriptionally promiscuous “Blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes. Mobile DNA. 10, 13. https://doi.org/10.1186/s13100-019-0155-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Logarithm of the relative expression of genes participating in piRNA interference in the tissues of the ovaries, body and head of females, as well as in the tissues of the central nervous system of third-instar larvae of the Canton-S line. n.d. – not detected, *p < 0.05, **p < 0.01, ***p < 0.001.

Download (307KB)
3. Fig. 2. Logarithm of the relative expression of LTR retrotransposons blood, copia, gypsy, roo and Tirant and telomeric LINE elements TART-A, TART-B, TART-C and Het-A in the tissues of the ovaries, corpus, head of females and the central nervous system of SS7K larvae and Canton-S. *p < 0.05, **p < 0.01, ns – statistically insignificant change.

Download (354KB)
4. Fig. 3. Logarithm of the level of relative expression of LTR retrotransposons blood, copia, gypsy, roo and Tirant (a) and telomeric retrotransposons TART-A, TART-B, TART-C and HeT-A (b) in the tissues of the body and head of piwi females [2] and piwi[3], as well as F1 females. K - bodies, G - heads, n.d. – not detected, *p < 0.5, **p < 0.01, ***p < 0.001, ns – statistically insignificant change.

Download (305KB)
5. Fig. 4. Relative expression level (lg) of various piRNA clusters in the body and head tissues of females of the piwi[2] and piwi[3] lines, as well as females of hybrids of these lines. sp – spliced forms, unsp – unspliced forms. K – bodies, G – heads, *p < 0.05, **p < 0.01, ***p < 0.001, ns – statistically insignificant change.

Download (237KB)
6. Fig. 5. Relative expression level (lg) of various piRNA clusters in the tissues of the ovaries, head and body of SS7K and Canton-S females. *p < 0.05, **p < 0.01; ns – statistically insignificant change, n.d. – not detected.

Download (251KB)

Copyright (c) 2024 Russian Academy of Sciences